(1)

PP-R PIPING SYSTEM

(1)
 (10)

RELIABLE SYSTEM FOR LONG YEARS

Gailleploset PP-R PIPING SYSTEM

TECHNICAL INFORMATION

2

Review of Products
\square Welding Technology

4

 Mounting and Installation

REル\|ABLE P\|PING SYSTEMS

CONTENT

Features of the system:

- Scope of use
- Advantages of the system
- Strength analysis of PP-R system
- Storage and transportation
- Warranty

Review of the products:

PP-R 100 Pipes (polypropilene type 3- RA130E)

- Gallaplast Standard Pipes Pn10/SDR11/S5
- Gallaplast Standard Pipes Pn16/SDR7,4/S3,2
- Gallaplast Standard Pipes Pn20/SDR6/S2,5
- Gallaplast STABI Pipes SDR7,4
- Gallaplast Fazer Pipes SDR7,4 with fiber-glass layer.

PP-RCT Pipes (thermostabilized polypropilene)

- Gallaplast Beta PPR Pipes SDR9/S4
- Gallaplast Beta PPR Pipes SDR7,4/S3,2
- Gallaplast-Beta Fazer Pipes SDR9/S4 with fiber-glass layer.
- Gallaplast-Beta Fazer Pipes SDR7,4/S3,2 with fiber-glass layer.
- Gallaplast-PPRCT Pipes SDR9/S4 in rolls for underfloor heating systems.
- Gallaplast-PPRCT Pipes SDR7,4/S3, in rolls for underfloor heating systems.

Fittings \& Tools.

Welding technology:

- Welding machine preparation for work.
- Preparation of elements for connection.
- Contact socket welding by fusion.

Mounting and installation:

- Open mounting.
- Mounting in shafts and ducts.
- Under plasterwork mounting.
- Fastening technology.
- Calculations of linear expansion.
- Linear expansion compensation.

INTRODUCTION

Steel pipes were used for internal piping systems of cold, hot water and heating systems. Long experience has shown that because of corrosion their lifespan is limited: only $10-15$ years.

Corrosion products degrade water quality and clog the internal cavity tubes, reducing their bandwidth and degrade the valves and automatic control devices.

The company "GALLAPLAST" offers you the pipes and fittings of plastics for cold and hot water supply of buildings, as well as for airconditioning and heating. Products are not subject to corrosion. Due to hygienic material properties GALLAPLAST pipeline system does not change the properties of water.

5 REASONS TO CHOOSE THE BENEFITS OF GALLAPLAST ${ }^{\circledR}$

Using the latest technology - multilayer extrusion and innovative materials - heat stabilized polypropylene

Time for usage at least 50 years.
(3) Reliability of the system even at a temperature of $110^{\circ} \mathrm{C}$.
(4) Guarantee on all products 15 years.
(5) Products are insured for 500,000 EUROS.

REル\|ABLE P\|PING SYSTEMS

SCOPE OF USE

On account of special physical and chemical properties of the materials, pipelines systems of GallaPlast have the most versatile application scope. Pressure pipe systems for water supply and heating are the most commonly used. Due to hygienic properties of the material, GallaPlast pipe systems do not alter potable water properties.

Potable water remains pure and potable!

As the material is able to withstand constant pressure and high temperature, these properties make it possible to widely use GallaPlast pipe system in heating systems.
Under long-duration exposure to constant temperature of $70^{\circ} \mathrm{C}$, and depending on preset pressure, the design service life exceeds 50 years. Any peak overloading of temperature up to $110^{\circ} \mathrm{C}$ due to short-time troubles does not generate problems for GallaPlast pipe systems.

SCOPE OF USE

GALLAPLAST PPR piping system is used in construction as pressure pipelines for potable water, cold and hot water supply pipes in office and industrial buildings, schools, hotels, etc.

The system is intended for quick and qualitative installation and construction of cold and hot water supply main lines, as well as connecting to water treatment plants and water supply stations;

Connecting standpipes and providing floor-by-floor distribution lay-out.

Classical or collector connecting up to the final post to tap water, with laying the system under plaster or upon walls.

RELIABLE PIPING SYSTEMS

SCOPE OF USE

GALLAPLAST PPR piping system is intended for heat supply systems both in multi-storeyed buildings and cottages. It allows carrying out construction of radiator heat systems and ceiling heating, as well as floor heating systems. We recommend using STABI pipes reinforced with aluminium, or pipes reinforced with FAZER glass-filled layer. These types of pipes, due to their reinforced layers, have lower coefficient of thermal linear expansion. This allows increasing distances in-between spans, which saves fastening collars..

Thanks to wide range of connection pieces, mounting of heating standpipes and main lines can be quick and reliable, as well as connecting radiators.

Connecting a radiator can be provided both for side or bottom feed.

Connecting to the source of heat (heat supply station, separate heat supply unit, heating boiler or heat supply pumping unit).

The range of GALLAPLAST PPR products allows mounting heating circuits of floor heating systems.

SCOPE OF USE

As to interior climate systems，which use heating and cooling supplied by ventilation units or elements，GALLAPLAST CLIMA pipes made of thermostabilized polypropylene are to be used，complete with GALLAPLAST fittings．．

GALLAPLAST PPR piping system can be used as pneumatic pipe lines， and also，to transport corrosive media，both in liquid and gaseous state． While designing process or industrial pipelines，it is necessary to take into consideration chemical stability，working temperature and pressure．

GallaPlast piping system allows quick，reliable and versatile mounting of pipes．This system can be used at any stage of construction work，for instance，to lay new pipes，to carry out repairs，or to execute rehabilitation or renovation activities．It is suitable for any type of mounting work：cut－and cover method， mounting under plaster，mounting in ducts and shafts，ductless underground laying，etc．

GallaPlast piping system，due to its wide variety of profiled parts， allows simple and reliable connecting to existing systems，which are made of other material．

RELIABLE PIPING SYSTEMS

ADVANTAGES OF THE SYSTEM

GallaPlast PPR piping system comprises all components which are required for mounting pipelines from main inlet gates or water meter to final post of tapping, and also, from heat supply unit to final radiator or heating elements.

GallaPlast PPR piping system, due to its wide variety of profiled parts, allows quick, simple and reliable connecting to existing systems, which are made of other material.

Mounting the system is simple and reliable. It does not require considerable labour and power costs. Technology of connecting is contact socket fusion or welding by means of special tools, and welded parts act as single pieces. This technology of welding the system parts ensures reliability, which allows carrying out pressure tests and putting lines into operation directly after welding.

Further to text marking, pipes have colour marking, to avoid confusing with pressure classes or range of application of pipes. Moreover, this essentially facilitates mounting.

GALLAPLAST PPR piping systems are not corrodible.

As compared with metal conduits or pipelines, GALLAPLAST PPR systems are less noisy in operation during water flowing.

GALLAPLAST PPR piping system saves heat energy. Thermal conductivity of this system comes to $0.24 \mathrm{~W} / \mathrm{mK}$, as compared to the same of steel coming to $74.4 \mathrm{~W} / \mathrm{mK}$. Heat losses of GALLAPLAST PPR system are 310 times less as compared to steel pipelines.

GALLAPLAST PPR systems stop light, and therefore, there are no hazards for algae formation and encrustation.

Thanks to the combined use of GallaPlast Fazer and GallaPlast Stabi pipes, the system has additional advantages in relation to normal polypropylene pipes:

- reducing linear thermal expansion by 75%;
- throughput capacity is 20% higher due to reduced thickness of pipe walls under the same load capacity.

GALLAPLAST PPR piping systems contribute to better environment. The systems are made of material which is friendly to environment. Neither the manufacturing, nor recycling waste produces any matters which are harmful to environment. .

ADVANTAGES OF THIE SYSTEM

Pipes GALLAPLAST STANDARD－Pn10；Pn16；Pn20；STABI，FAZER，and fittings are manufactured from a material PP－R 100，which according to its strength characteristics is superior to standard polypropylene PP－R 80.

When operating at high temperatures of $95{ }^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}$ ，the lifetime of the pipeline system GALLAPLAST ${ }^{\circledR}$ ，will be 25－30 \％longer than that of a similar system，made of standard polypropylene PP－R 80.

Using advanced technology and innovative multilayer extrusion material company GALLAPLAST has since 2009 launched a multi－layer pipes Beta PP－R and Beta FAZER of heat stabilized polypropylene PP－RCT．

Due to the unique physical and mechanical properties of the new material products have high thermal stability and high throughput．High thermal stability of the material PP－ RCT is achieved thanks to a new crystal lattice－Hexagonal（b－structure），which has additional molecular bond，it can enable the material－heat stabilized polypropylene maintain their strength under the influence of constant pressure and temperature for the entire period of operation．

STRDNGTH ANALYSIS OF PP-R SYSTIEM

For comparison, we perform the calculation of the operating pressures for pipes SDR 7, 4 of materials:
a) heat stabilized polypropylene PP-RCT
b) the standard polypropylene PP-R

To perform this calculation to determine the S-series of tubes.

$$
\mathrm{S}=\frac{\mathrm{d}_{\mathrm{n}}-\mathrm{e}_{\mathrm{n}}}{2 \mathrm{e}_{\mathrm{n}}}
$$

where: d_{n}-nominal outside diameter, in millimeters
e_{n} - nominal wall thickness, in millimeters
For example, we calculate the S-series of pipe with diameter D32, wall thickness 4.4 mm .

$$
S=\frac{32-4,4}{2 * 4,4}=3,2
$$

We define the long-term hydrostatic strength for pipe S3,2

For material PPRCT (heat stabilized polypropylene)

Operating temperature: $70^{\circ} \mathrm{C}$
Period of usage: 50 years
Hydrostatic strenght in the pipe wall: 5, 1 Mpa
Operating pressure:
$\mathrm{P}_{0}=\frac{\text { HYDROSTATIC STRENGTH }}{\mathrm{S}-\mathrm{PIPE} \text { SERIES }}=\frac{5,1 \mathrm{Mpa}}{3,2}=1,59 \mathrm{Mpa}=15,9 \mathrm{Bar}$
Poper.(with safety factor -1.3) $=15,9 / 1,3=12 \mathrm{Bar}$
Operating temperature: $95^{\circ} \mathrm{C}$
Period of usage: 5 years
Hydrostatic strenght in the pipe wall: 3,4 Mpa
Operating pressure:
$\mathrm{P}_{0}=\frac{\text { HYDROSTATIC STRENGTH }}{S-\text { PIPE SERIES }}=\frac{3,4 \mathrm{Mpa}}{3,2}=1,06 \mathrm{Mpa}=10,6 \mathrm{Bar}$
Poper.(with safety factor -1.3) $=10,6 / 1,3=8 \mathrm{Bar}$

For material PP-R (standard polypropylene)

Operating temperature: $70^{\circ} \mathrm{C}$
Period of usage: 50 years
Hydrostatic strenght in the pipe wall: $3,15 \mathrm{Mpa}$
Operating pressure:
$\mathrm{P}_{0}=\frac{\text { HYDROSTATIC STRENGTH }}{\text { S-PIPE SERIES }}=\frac{3,15 \mathrm{Mpa}}{3,2}=0,98 \mathrm{Mpa}=9,8 \mathrm{Bar}$
Poper.(with safety factor -1.3) $=9,8 / 1,3=7$ Bar
Operating temperature: $95^{\circ} \mathrm{C}$
Period of usage: 5 years
Hydrostatic strenght in the pipe wall: $1,9 \mathrm{Mpa}$
Operating pressure:
$\mathrm{P}_{0}=\frac{\text { HYDROSTATIC STRENGTH }}{\text { S-PIPE SERIES }}=\frac{1,9 \mathrm{Mpa}}{3,2}=0,59 \mathrm{Mpa}=5,9 \mathrm{Bar}$
Poper.(with safety factor -1.3) $=5,9 / 1,3=4,5 \mathrm{Bar}$
Seen from the calculations - pipes SDR7, 4/S3, 2 of heat stabilized
polypropylene at an operating temperature of $70{ }^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$ is 1.7 times stronger than similar pipes from standard polypropylene.

SYSTEM LIFE PERIOD, OPERATING TEMPERATURE AND PRESSURE LIMITS, ACCORDING TO ISO 15874 APPLICATION CLASS.

ISO 15874 standard classifies, according to different conditions, all the water and heating systems to following classes:

Application class	Design temperature T(oper.) C ${ }^{\circ}$	Time at T (oper.) years	$T \text { (max.) }$ C°	Time at T (max.) years	$\begin{gathered} T(\text { mal. }) \\ \mathrm{C}^{\circ} \end{gathered}$	Time at T (mal.) h	Typical field of application
1	60	49	80	1	95	100	Hot water supply ($60^{\circ} \mathrm{C}$)
2	70	49	80	1	95	100	Hot water supply ($70^{\circ} \mathrm{C}$)
3	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	50	4,5	65	100	Low Underfloor Heating
4	$\begin{aligned} & 20 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 2,5 \\ & 20 \\ & 25 \end{aligned}$	70	2,5	100	100	High Underfloor Heating and Low Temperature Radiators
5	$\begin{aligned} & 20 \\ & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 14 \\ & 25 \\ & 10 \end{aligned}$	90	1	100	100	High Temperature Radiators
XB	20	50	--	--	--	--	Cool water supply

Table 1

As shown in Table 1, the standard identified six main conditions:
Application class 1 - the condition of pipelines in hot water at a constant operating temperature of $60^{\circ} \mathrm{C}$ ($T_{\text {oper. }}$). For this class of service provided by the annual increase in the operating temperature of $80^{\circ} \mathrm{C}\left(T_{\max }\right.$.) for a period of 175 hours for the rehabilitation of water supply system, and also allow a short-term increase in operating temperature up to $95^{\circ} \mathrm{C}(\mathrm{Tmal}$.) for up to 100 hours in case of emergency Total lifetime Toper. + Tmax. + Tmal. -50 years.

Application class 2 - the condition of pipelines in hot water at a constant operating temperature of $70^{\circ} \mathrm{C}\left(T_{\text {oper. }}\right)$. For this class of service provided by the annual increase in the operating temperature of $80^{\circ} \mathrm{C}\left(T_{\max }\right.$.) for a period of 175 hours for the rehabilitation of water supply system, and also allow a short-term increase in operating temperature up to $95^{\circ} \mathrm{C}\left(T_{\text {mal }}\right)$) for up to 100 hours in case of emergency Total lifetime Toper. + Tmax. + Tmal. - 50 years.

Application class 3-the condition of pipelines in low temperature floor heating systems. In this class the application of polypropylene piping is not recommended due to the low thermal conductivity of the material.

Application class 4 - the condition of pipelines in high-temperature floor heating systems or low-temperature radiator heating. In this class the heating system operates in a temperature range where the maximum flow temperature up to $70^{\circ} \mathrm{C}$ ($T_{m a x}$.). Short-term increase of the working temperature to $100^{\circ} \mathrm{C}(T$ mal. $)$ is possible for up to 100 hours in case of emergency.
Total lifetime Toper. + Tmax. + Tmal. - 50 years.

RELIABLE PIPING SYSTEMS

STRENGTH ANALYSIS OF PP-R SYSTEM

Application class 5-the condition of pipelines in high-temperature radiator heating systems. In this class the heating system operates in a temperature range where the maximum flow temperature of $90^{\circ} \mathrm{C}\left(T_{\max }\right)$. Short-term increase of the working temperature to $100^{\circ} \mathrm{C}\left(\mathrm{Tmal}^{\mathrm{m}}\right)$ is possible for up to 100 hours in case of emergency.
Total lifetime Toper. + Tmax. + Tmal. -50 years.
Application class XB - the condition of pipelines in cold water. Period is 50 years.

MAXIMALLY ALLOWED WORKING PRESSURE FOR EACH CLASS OF OPERATION DEPENDING ON THE TYPE OF THE PIPELINE FROM POLYPROPYLENE PP-R (Type 3)

During operation tension will appear due to external pressure in the walls and fittings of pipes. In connection with this standard introduced the concept - S series, which allows you to quickly select the right type of pipe, depending on the operating pressure and operating conditions.
For single-walled tubes S series is calculated by the following formula:

$$
\mathrm{S}=\frac{\mathrm{d}_{\mathrm{n}}-\mathrm{e}_{\mathrm{n}}}{2 \mathrm{e}_{\mathrm{n}}}
$$

d_{n} - nominal outside diameter, in millimeters
e_{n}-nominal wall thickness, in millimeters
For multilayer composite pipes (STABI and FAZER) this formula does not apply.

Pipes GALLAPLAST ${ }^{\circledR}$ of material PP-R (Type3) have the following series of S:
STANDARD PIPE Pn10/SDR11 - seriesS5

STANDARD PIPE Pn16/SDR7,4 - series S 3,2
STANDARD PIPE Pn20/SDR6 - series S 2,5
Combined PIPE STABI SDR7,4 - match the series S2,5
Combined PIPE FAZER SDR7,4 - match the series S 3,2

Using Table 2, you can quickly determine the type of pipe for a given pressure and class exploitation. To do this, meet the following conditions:

Series \mathbf{S} pipe \leq calculated pipe value series \mathbf{S} max, shown in Table 2.

The working pressure Bar	Application Classes					
	Class 1	Class 2	Class 4	Class 5	Cold Water Supply	
$\mathbf{4}$	6,9	5,3	6,9	4,8		
$\mathbf{6}$	5,2	3,6	5,5	3,2	6,9	
$\mathbf{8}$	3,9	2,7	4,1	2,4		
$\mathbf{1 0}$	3,1	2,1	3,3	1,9		

Table 2.

STRENGTH ANALYSIS OF PP-R SYSTEM

MAXIMALLY ALLOWED WORKING PRESSURE FOR EACH CLASS OF OPERATION DEPENDING ON THE TYPE OF THE PIPELINE FROM HEAT STABILIZED POLYPROPYLENE PP-RST

Pipe GALLAPLAST ${ }^{\circledR}$ of material PP-RCT have the following series of S:

Beta PPR	PIPE SDR9	$-\quad$ series S 4	
Beta PPR	PIPE SDR7,4	- series S 3,2	
Combined PIPE Beta FAZER	SDR9	-	series S 4
Combined PIPE Beta FAZER	SDR7,4	-	series S 3,2

Using Table 3, you can quickly determine the type of pipe for a given pressure and class exploitation. To do this, meet the following conditions:

Series \mathbf{S} pipe \leq calculated pipe value series \mathbf{S} max, shown in Table 3 .

| The working
 pressure
 Bar | Class 1 | Class 2 | Class 4 | Class 5 | Cold Water
 Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | calculated pipe value series S max | | | | |
| $\mathbf{4}$ | 8,2 | 8,2 | 8,2 | 7,3 | |
| $\mathbf{6}$ | 6,1 | 5,7 | 6,1 | 4,8 | 8,2 |
| $\mathbf{8}$ | 4,5 | 4,3 | 4,5 | 3,6 | |
| $\mathbf{1 0}$ | 3,6 | 3,4 | 3,7 | 2,9 | |

Table № 3 .

EXAMPLE:

The task:
You have to choose the type of pipeline for hot water system in apartment building.

Specifications:

1. The service life of the pipeline at least 50 years.
2. Operating class 1 - hot water at a constant operating temperature of $60^{\circ} \mathrm{C}$ (see Table 1)
3. Operating Pressure -8 Bar.
a) If the building is made of tubes made of the material PP-R (Type3), then according to Table 2 we choose a series S max for class of exploitation 2 with pressure 8 Bar. $(\mathrm{S} \max =3,9)$

Choose the type of pipe that meets the following condition:
series \mathbf{S} pipe \leq calculated pipe value series \mathbf{S} max:
These requirements meet the pipe grades:

- STANDARD PIPE Pn20/SDR6/S 2,5
- Combined pipe STABI SDR7,4/S 2,5
- Combined pipe FAZER SDR7,4/S3,2

All of the above tubes correspond to the condition: S series $\mathrm{Pipe} \leq 3,9$
b) If the building is made of tubes made of the material PP-RCT, then according to Table 3 we choose the series S max for class of exploitation 1 with pressure 8 Bar. $(\mathrm{S} \max =4,5)$

These requirements meet the pipe grades:

- Beta PPR PIPE SDR9/S4
- BetaPPR PIPE SDR7,4/S 3,2
- Combined pipe Beta FAZER SDR9/S 4
- Combined pipe Beta FAZER SDR7,4/ S 3,2

All of the above tubes correspond to the condition: S series $\mathrm{Pipe} \leq 4,5$

STRENGTH ANALYSIS OF PP-R SYSTIEM

Long-term hydrostatic strength of PP-R

CALCULATION THE LIFETIME OF THE PIPELINE, IF THE OPERATING PRESSURE DIFFERS FROM THE STANDARD REQUIREMENTS WHEN CHOOSING THE PIPELINE.

This method allows to calculate the service life of a pipeline, if the conditions are violated, where a series of tubes $S>$ Account series S max, specified in the standard.

Task 1: You need to calculate the service life of the pipeline material PP-R brand Standard Pn20 / SDR6, 0 - Series S 2,5 for Class 2 operation (hot water at a constant temperature of 70 C), with an operating pressure - 10 Bar or 1 MPa :

1. According to Table 1 of this class of operation established the following temperature conditions during 50 years:
Toper. $=T l=70^{\circ} \mathrm{C}$ - 49 years, i.e. the effect of the temperature during the all years is $a_{1}=\mathbf{9 8} \%$;
$T \max .=T 2=80^{\circ} \mathrm{C}-1$ year, i.e. $\boldsymbol{a} \mathbf{2}=\mathbf{2} \%$;
Tmal. $=T 3=95^{\circ} \mathrm{C}-100$ hours, i.e. $\boldsymbol{a} 3=\mathbf{0 , 0 2 2 8} \%$
2. Determine the calculated stress in the pipe wall from the following expression: $\delta_{0}=$ Poperating pressure $(\mathrm{MPa}) \times \mathrm{S}($ series of pipe $)=1,0 \times 2,5=2,5 \mathrm{MPa}$
3. The factor of safety at temperatures Toper., Tmax., Tmal., according to this standard : $\mathrm{C}_{1}=1,5 ; \mathrm{C}_{2}=1,3 ; \mathrm{C}_{3}=1$
4. Determine the calculated stress in the pipe wall with the action the safety factor.

$$
\begin{aligned}
& \delta_{1}=\mathrm{C}_{1} \times \delta_{0}=1,5 \times 2,5=3,75 \mathrm{MPa} \\
& \delta_{2}=\mathrm{C}_{4} \times \delta_{0}=1,3 \times 2,5=3,25 \mathrm{MPa} \\
& \delta_{3}=\mathrm{C}_{5} \times \delta_{0}=1,0 \times 2,5=2,5 \mathrm{MPa}
\end{aligned}
$$

5. Using the graph of the isotherm for the material strength PP-R determine the time $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$, where the pipe can withstand without collapsing under the continuous action of each of the individual temperatures and stress in the wall of $\delta_{1}, \delta_{2}, \delta_{3}$.

$$
\mathrm{t}_{1}=230000 \text { hours, } \mathrm{t}_{2}=75000 \text { hours, } \mathrm{t}_{3}=46000 \text { hours }
$$

6. Further, it comes from the rule of Miner that if the time to failure of the pipe is t_{l} (years) under the continuous action of temperature T_{l}, then the ratio $1 / t_{l}-$ this is a "level of damages" attributable to a year in continuous operation under this temperature. If the action of the temperature throughout the year is continuous and reaches a_{1}, the "share of annual damage" is a_{1} / t_{1}.

The total damage TYD (\%) is defined with formula:

$$
\mathrm{TYD}=\Sigma a_{i} / t_{i}
$$

The service life of the pipeline in the given conditions of use $T x$, is the inverse of TYD and it makes in hours:

$$
T x=100 / T Y D=100 / 4,53 * 10^{-4}=220671 \text { hours }=25.2 \text { years }
$$

CALCULATION THE LIFETIME OF THE PIPELINE, IF THE OPERATING PRESSURE DIFFERS FROM THE STANDARD REQUIREMENTS WHEN CHOOSING THE PIPELINE.

Task 2: You need to calculate the service life of the pipeline material PP-RST brand Beta FAZER SDR7, 4 - Series S 3,2 for class range 5 (high heat) with a working pressure -9 Bar or $0,9 \mathrm{MPa}$.

1. According to Table 1 of this class of operation established the following temperature conditions during 50 years
Toper $=T 1=20^{\circ} \mathrm{C}-14$ years, i.e. the effect of the temperature during the years

$$
\text { is } a_{1}=28 \% \text {; }
$$

Toper $2=T 2=60^{\circ} \mathrm{C}-25$ years, i.e. $\boldsymbol{a} \mathbf{2}=\mathbf{5 0} \%$,
Toper $3=T 3=80^{\circ} \mathrm{C}-10$ years, i.e. $\boldsymbol{a} 3=20 \%$;
Tmax. $=T_{4}=90^{\circ} \mathrm{C}-1$ year, i.e. $\boldsymbol{a} 4=2 \%$;
Tmal. $=T 5=100{ }^{\circ} \mathrm{C}-100$ hours, i.e. $\boldsymbol{a} 5=\mathbf{0 , 0 2 2 8} \%$
2. Determine the calculated stress in the pipe wall from the following expression: $\delta_{0}=$ Poperating pressure $(\mathrm{MPa}) \times \mathrm{S}$ (series of pipe) $=0,9 \times 3,2=2,88 \mathrm{MPa}$
3. The factor of safety at temperatures Toper., Tmax., Tmal., according to this standard: $\mathrm{C}_{1-3}=1,5 ; \mathrm{C}_{4}=1,3 ; \mathrm{C}_{5}=1$
4. Determine the calculated stress in the pipe wall with the action the safety factor.

$$
\begin{aligned}
\delta_{1-3} & =\mathrm{C} 1-3 \times \delta_{0}=1,5 \times 2,88=4,32 \mathrm{MPa} \\
\boldsymbol{\delta}_{4} & =\mathrm{C} 4 \times \boldsymbol{\delta}_{0}=1,3 \times 2,88=3,74 \mathrm{MPa} \\
\boldsymbol{\delta}_{5} & =\mathrm{C} 5 \times \boldsymbol{\delta}_{0}=1,0 \times 2,88=2,88 \mathrm{MPa}
\end{aligned}
$$

5. Using the graph of the isotherm for the material strength PP-RST determine the time $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}, \mathrm{t}_{5}$, where the pipe can withstand without collapsing under the continuous action of each of the individual temperatures and stress in the wall of $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5} . \quad \mathrm{t}_{1}>10000000$ hours, $\mathrm{t}_{2}>10000000(\mathrm{~h}),. \mathrm{t}_{3}=210000(\mathrm{~h}$.$) ,$ $\mathrm{t}_{4}=40000(\mathrm{~h}), \mathrm{t}_{5}=25000(\mathrm{~h})$.
6. Further, it comes from the rule of Miner that if the time to failure of the pipe is t_{l} (years) under the continuous action of temperature T_{1}, then the ratio $1 / t_{l}$ - this is a "level of damages" attributable to a year in continuous operation under this temperature. If the action of the temperature throughout the year is continuous and reaches a_{1}, the "share of annual damage" is a_{1} / t_{1}.

$\left\lvert\, \begin{array}{ccc} \mathrm{t}_{1} & a_{1} & a_{1} / t_{1} \\ \text { hours } & \% & \% / \text { hours } \\ 1^{\star} 10^{6} & 28 & 2,8^{\star} 10^{-5} \end{array}\right.$	$\left\|\begin{array}{ccc} \mathrm{t} 2^{2} & a_{2} & a_{2} / t_{2} \\ \text { hours } & \% & \% / \text { hours } \\ 1 * 10^{6} & 50 & 5^{*} 10^{-5} \end{array}\right\|$	$\left\|\begin{array}{ccc} \mathrm{t}_{3} & a_{3} & a_{3} / t_{3} \\ \text { hours } & \% & \% / \text { hours } \\ 2,1^{*} 10^{5} & 20 & 9,5^{*} 10^{-5} \end{array}\right\|$	$\left\|\begin{array}{ccc} t_{4} & a_{4} & a_{4} / t_{4} \\ \text { hours } & \% & \% / \text { hours } \\ 4^{*} 10^{4} & 2 & 5^{*} 10^{-5} \end{array}\right\|$	$\left\|\begin{array}{ccc} t_{5} & a_{5} & a_{5} / t_{5} \\ \text { hours } & \% & \% / \text { hours } \\ 25^{*} 10^{3} & 0,0228 & 9^{*} 10^{-7} \end{array}\right\|$	$\begin{gathered} \sum_{c} a_{i} / t_{i} \\ \% / \text { hours } \\ 22,4^{*} 10^{-5} \end{gathered}$

The total damage TYD (\%) is defined with formula :

$$
\mathrm{TYD}=\Sigma a_{i} / t_{i}
$$

The service life of the pipeline in the given conditions of use $T x$, is the inverse of TYD and it makes in hours:

$$
T x=100 / T Y D=100 / 22,4 * 10^{-5}=446129 \text { hours }=51 \text { years }
$$

REL\|ABLE PIPING SYSTEMS

STORAGE AND TRANSPORTATION

GALLAPLAST pipes may be stored at any ambient outside temperature. Places for storing are to be chosen so that pipes can be placed the full length of these pipes. Pipes shall not be placed with uneven loading on one side. Prevent bending the pipes. Pipes shall not be placed on sharp supports during their storing or transportation.

Maximum height of stacking the pipes shall not exceed ONE metre. However, when special pallet racks are used, the above limitation is not valid.

At sub-zero temperatures, hazards of damages may arise due to heavy shocks. Therefore, the material shall be handled with care at ambient low temperatures.

Plastic profiled parts shall be stored in plastic bags, on pallets, or in bulk in cardboard boxes, containers or baskets, etc.

During handling or transportation, it is prohibited to drag pipes on ground or deck surface of transport vehicle.
It is prohibited to drop a load of pipes off the deck surface onto ground.

While handling and carrying pipes to a construction site, it is necessary to protect pipes from any mechanical damage. At the site, pipes are to be placed on proper base; pipes are to be safeguarded against any contamination, or solvents, as well as direct impacts of heat or mechanical damages.

All GALLAPLAST items are supplied in protective polyethylene packing.

WARRANTY

GALLAPLAST piping system is covered by 15 -year warranty. The warranty is valid under conditions of proper operation, compliance with proper rules of engineering, installation, storage and transportation.

GALLAPLAST ${ }^{\circledR}$ STANDARD PIPE Pn10/ SDR11/ S5

Characteristic of pipes:

material	$:$ PP-R100 (TYP-3)
pressure class	$:$ Pn 10
series	$:$ SDR11 / S5
standard	$:$ EN ISO 15874
colour	$:$ light-grey, green, white
colour marking	$:$ four (4) blue stripes
pipe length	$: 4 \mathrm{~m}$
bar code	$:$ yes

Scope:

- pressure pipelines for cold potable water,
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure;
- pipeline networks for water supply to swimming pools;
- pipeline networks for water basins;
- pipelines for agricultural and garden purposes;

Working pressure at 50 years of operation:

The working pressure Bar	Application Classes				
	Hot Wat	Supply	Radi	ating	Cold Water
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class $2\left(70^{\circ} \mathrm{C}\right)$	Class 4	Class 5	Supply
4	+	+	+	-	$+$
6	+	-	+	-	
8	-	-	-	-	
10	-	-	-	-	

(+) applied
$(-)$ not recommended or required a recalculation of life cycle

Pipe technical specifications :

ITEM. № 4m	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	PIPE WALL $\mathrm{S}(\mathrm{~mm})$	$\begin{gathered} \text { INSIDE } \\ \text { DIAMETER } \\ \text { dj(mm) } \end{gathered}$	PACKING (meters)	WEIGHT (kg/m)	DN
01020	20	1,9	16,2	100	0,107	15
01025	25	2,3	20,4	100	0,163	20
01032	32	2,9	26,2	60	0,259	25
01040	40	3,7	32,6	40	0,412	32
01050	50	4,6	40,8	24	0,639	40
01063	63	5,8	51,4	16	1,010	50
01075	75	6,8	61,4	12	1,410	50
01090	90	8,2	73,6	8	2,022	65
01110	110	10,0	90,0	4	3,000	80

RELIABLE PIPING SYSTEMS

GALLAPLAST ${ }^{\circledR}$ STANDARD PIPE Pn16/ SDR7,4/ S3,2

Characteristic of pipes:

material	$:$ PP-R100 $($ TYP-3)
pressure class	$:$ Pn 16
series	$:$ SDR7.4 / S3.2
standard	$:$ EN ISO 15874
colour	$:$ light-grey, green, white
colour marking	$:$ four (4) green stripes
pipe length	$: 4 \mathrm{~m}$
bar code	$:$ yes

Scope:

- pressure pipelines for cold and hot potable water;
- low and high-temperature radiator heating;
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure,
- pipeline networks for connection to heat pumps;
- pipeline networks for water supply to swimming pools

Working pressure at $\mathbf{5 0}$ years of operation:

The working pressure Bar	Application Classes				
	Hot Wat	Supply	Radi	ating	Cold Water
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class $2\left(70^{\circ} \mathrm{C}\right)$	Class 4	Class 5	Supply
4	+	+	+	+	+
6	+	+	+	+	
8	+	-	+	-	
10	-	-	+	-	

$(+)$ applied
$(-)$ not recommended or required a recalculation of life cycle
Pipe technical specifications :

ITEM. № 4M	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	PIPE WALL S (mm)	$\begin{gathered} \text { INSIDE } \\ \text { DIAMETER } \\ \mathrm{dj}_{\mathrm{j}}(\mathrm{~mm}) \end{gathered}$	PACKING (meters)	WEIGHT (kg/m)	DN
02016	16	2,2	11,6	200	0,095	12
02020	20	2,8	14,4	100	0,148	15
02025	25	3,5	18,0	100	0,231	20
02032	32	4,4	23,2	60	0,371	25
02040	40	5,5	29,0	40	0,578	
02050	50	6,9	36,2	24	0,901	32
02063	63	8,6	45,8	16	1,417	40
02075	75	10,3	54,4	12	2,018	50
02090	90	12,3	65,4	8	2,863	65
02110	110	15,1	79,8	4	4,288	80

GALLAPLAST ${ }^{(13}$ STANDARD PIPE Pn20/SDR6/ S2,5

Characteristic of pipes:

material	$:$ PP-R100 (TYP-3)
pressure class	$:$ Pn 20
series	$:$ SDR6 / S2,5
standard	$:$ EN ISO 15874
colour	light-grey, green, white
colour marking	$:$ four (4) red stripes
pipe length	$: 4 \mathrm{~m}$
bar code	$:$ yes

Scope:

- pressure pipelines for cold and hot potable water;
- low and high-temperature radiator heating;
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure,
- pipeline networks for connection to heat pumps
- connections to heating stations and distribution units

Working pressure at 50 years of operation:

The working pressure Bar	Application Classes				
	Hot Wat	Supply	Radi	ating	Cold Water
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class $2\left(70^{\circ} \mathrm{C}\right)$	Class 4	Class 5	Supply
4	+	+	+	+	+
6	+	+	+	+	
8	+	+	+	-	
10	+	-	+	-	

$(+)$ applied
$(-)$ not recommended or required a recalculation of life cycle

Pipe technical specifications :

ITEM. № 4m	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	PIPE WALL S (mm)	$\begin{gathered} \text { INSIDE } \\ \text { DIAMETER } \\ \mathrm{dj}_{\mathrm{j}}(\mathrm{~mm}) \end{gathered}$	PACKING (meters)	WEIGHT (kg/m)	DN
03016	16	2,7	10,6	200	0,110	10
03020	20	3,4	13,2	100	0,173	12
03025	25	4,2	16,6	100	0,267	15
03032	32	5,4	21,2	60	0,436	20
03040	40	6,7	26,6	40	0,675	25
03050	50	8,3	33,4	24	1,048	32
03063	63	10,5	42,0	16	1,663	40
03075	75	12,5	50,0	12	2,330	50
03090	90	15,0	60,0	8	3,353	
03110	110	18,3	73,4	4	5,004	65

GALLAPLAST STABI PIPE SDR7,4

Characteristic of pipes:

Pipes with low coefficient of linear expansion.
material : PP-R100/AL/PP-R100
series : SDR7.4
standard : EN ISO 15874
colour : light-grey, green, white
colour marking : without any stripes
pipe length : 4 m

Scope:

- pressure pipelines for cold and hot potable water;
- low and high-temperature radiator heating;
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure
- pipeline networks for connection to heat pumps;
- connections to heating stations and distribution units

Working pressure at 50 years of operation:

The working pressure Bar	Application Classes				
	Hot Water Supply		Radiator heating		Cold Water
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class $2\left(70^{\circ} \mathrm{C}\right)$	Class 4	Class 5	
4	+	+	+	+	
6	+	+	+	+	
8	+	+	+	-	
10	+	-	+	-	

(+) applied
$(-)$ not recommended or required a recalculation of life cycle

Pipe technical specifications :

ITEM. № 4M	$\begin{aligned} & \text { SIZE } \\ & \text { D (mm) } \end{aligned}$	PIPE WALL		INSIDE DIAMETER dj(mm)	PACKING (meters)	WEIGHT (kg/m)	DN
		Nominal $\mathrm{S}(\mathrm{~mm})$	Total Sq (mm)				
04020	20	2,8	3,6	14,4	100	0,219	15
04025	25	3,5	4,4	18,0	100	0,322	20
04032	32	4,5	5,4	23,0	60	0,499	25
04040	40	5,6	6,6	28,8	40	0,739	25
04050	50	6,9	7,9	36,2	24	1,095	32
04063	63	8,7	9,7	45,6	16	1,677	40
04075	75	10,4	11,4	54,2	12	2,320	50

GALLAPLAST ${ }^{\circledR}$ FAZIER PIPE SDR7,4

Characteristic of pipes:

Pipes with low coefficient of linear expansion - thanks to the fiberglass reinforced middle layer.

material	$:$ PP-R100/PPR-GF/PP-R100
series	$:$ SDR7.4
standard	$:$ EN ISO 15874
colour	$:$ light-grey, green, white
colour marking	$:$ four (4) dark-grey stripes
pipe length	$: 4 \mathrm{~m}$
bar code	$:$ yes

Scope:

- pressure pipelines for cold and hot potable water;
- low and high-temperature radiator heating;
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure,
- pipeline networks for connection to heat pumps,
- connections to heating stations and distribution units

Working pressure at 50 years of operation:

The working pressure Bar	Application Classes				
	Hot Water Supply		Radiator heating		Cold Water
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class 2(70 ${ }^{\circ} \mathrm{C}$)	Class 4	Class 5	
4	+	+	+	+	
6	+	+	+	+	1
8	+	+	+	-	+
10	+	-	+	-	

(+) applied
$(-)$ not recommended or required a recalculation of life cycle

Pipe technical specifications :

ITEM. No 4 m	SIZE $\mathrm{D}(\mathrm{mm})$	PIPE WALL $\mathrm{S}(\mathrm{mm})$		INSIDE DIAMETER dj(mm)	PACKING (meters)	WEIGHT $(\mathrm{kg} / \mathrm{m})$
06020	20	2,8	14,4	100	0,148	15
06025	25	3,5	18,0	100	0,230	20
06032	32	4,4	23,2	60	0,380	25
06040	40	5,5	29,0	40	0,582	25
06050	50	6,9	36,2	24	0,896	32
06063	63	8,6	45,8	16	1,430	40
06075	75	10,3	54,4	12	2,045	50
06090	90	12,3	65,4	8	2,920	65

ADVANTAGES:

PROFITABLE PRICE

QUICK INSTALLATION
(do not require cleaning cover layer)

LOW EXPANSION
standard pipe $\quad \mathbf{0}, \mathbf{1 5} \mathrm{mm} / \mathrm{mC}{ }^{\circ}$ FAZER pipe $\quad \mathbf{0} 0,04 \mathrm{~mm} / \mathrm{mC}$ STABI pipe $\quad \mathbf{- 0 , 0 3} \mathbf{m m} / \mathrm{mC}^{\circ}$

HIGH STABILITY

INCREASED FLOW
(By reducing the wall thickness of the pipe, the capacity of flow is 20% while maintaining the same load capacity)

STANDARD PIPE Pn20

GALLAPLAST FAZER PIPE

GALLAPLAST ${ }^{(1)}$ BetaPPR PIPE SDR $9 /$ S4

ADVANTAGES:

PROFITABLE PRICE
LIGHT WEIGHT

INCREASED RESISTANCE TO PRESSURE AND HIGH THERMAL STABILITY
(through the use of innovative technologies, the new material, thermo-stabilized polypropylene PP-RCT is 1.7 times stronger than standard polypropylene PP-R)

INCREASED FLOW

(By reducing the wall thickness of the pipe, the capacity of flow is 35% while maintaining the same load capacity)

Characteristic of pipes:

Thermo-stabilized polypropylene pipes with high capacity.
material : PP-RCT/PP-R100
series : SDR9/S4
standard : EN ISO 15874, SKZ HR3.34
colour : light-grey, green, white
colour marking : four (4) black stripes
pipe length : 4 m
bar code : yes

Scope:

- pressure pipelines for cold and hot potable water;
- low and high-temperature radiator heating;
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure
- pipeline networks for connection to heat pumps;
- connections to heating stations and distribution units

Working pressure at $\mathbf{5 0}$ years of operation:

The working pressure Bar	Application Classes				
	Radiator heating		Cold Water Supply		
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class 2 $\left(70^{\circ} \mathrm{C}\right)$	Class 4	Class 5	
	+	+	+	+	
	+	+	+	+	+
	+	+	+	-	

$(+)$ applied
$(-)$ not recommended or required a recalculation of life cycle

Pipe technical specifications :

ITEM. No 4 m	SIZE $\mathrm{D}(\mathrm{mm})$	PIPE WALL $\mathrm{S}(\mathrm{mm})$	INSIDE DIAMETER dj(mm)	PACKING (meters)	WEICHT $(\mathrm{kg} / \mathrm{m})$	DN
03120	20	2,3	15,4	100	0,129	15
03125	25	2,8	19,2	100	0,193	20
03132	32	3,6	24,6	60	0,317	25
03140	40	4,5	31,0	40	0,494	32
03150	50	5,6	38,6	24	0,765	40
03163	63	7,1	48,8	16	1,220	50
03175	75	8,4	58,2	12	1,700	50
03190	90	10,1	69,8	8	2,450	65

GALLAPLAST ${ }^{(8)}$ Beta PPR PIPE SDR 7,4/ S3,2

Characteristic of pipes:

Thermo-stabilized polypropylene pipes with high capacity.
material : PP-RCT/PP-R100
series
: SDR7,4/S3,2
standard : EN ISO 15874, SKZ HR3.34
colour : light-grey, green, white
colour marking
pipe length
: without any stripes
bar code
4 m
: yes

Scope:

- pressure pipelines for cold and hot potable water;
- low and high-temperature radiator heating;
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure,
- pipeline networks for connection to heat pumps;
- connections to heating stations and distribution units

Working pressure at 50 years of operation:

The working pressure Bar	Application Classes				
	Hot Water Supply		Radiator heating		Cold Water
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class $2\left(70^{\circ} \mathrm{C}\right)$	Class 4	Class 5	Supply
4	+	+	+	+	
6	+	+	+	+	+
8	+	+	+	+	+
10	+	+	+	-	

$(+)$ applied
$(-)$ not recommended or required a recalculation of life cycle

Pipe technical specifications :

ITEM. No 4 m	SIZE $\mathrm{D}(\mathrm{mm})$	PIPE WALL $\mathrm{S}(\mathrm{mm})$	INSIDE DIAMETER dj(mm)	PACKING $($ meters $)$	WEIGHT $(\mathrm{kg} / \mathrm{m})$	DN
07016	16	2,2	11,6	200	0,098	12
07020	20	2,8	14,4	100	0,152	15
07025	25	3,5	18,0	100	0,237	20
07032	32	4,4	23,2	60	0,380	25
07040	40	5,5	29,0	40	0,590	32
07050	50	6,9	36,2	24	0,919	32
07063	63	8,6	45,8	16	1,443	40
07075	75	10,3	54,4	12	2,020	50
07090	90	12,3	65,4	8	2,900	65

Thermo-stabilized polypropylene PP-RCT

ADVANTAGES:

PROFITABLE PRICE

LIGHT WEIGHT

INCREASED RESISTANCE

 TO PRESSURE AND HIGH THERMAL STABILITY(through the use of innovative technologies, the new material, thermo-stabilized polypropylene PP-RCT is 1.7 times stronger than standard polypropylene PP-R)

INCREASED FLOW

(By reducing the wall thickness of the pipe, the capacity of flow is 45% while maintaining the same load capacity)

GALLAPLAST ${ }^{\circledR}$ Beta FAZZRR PIPE SDR 9/ S4

ADVANTAGES:

PROFITABLE PRICE
QUICK INSTALLATION
(do not require cleaning cover layer)

LOW EXPANSION

standard pipe $\quad \mathbf{0}, 15 \mathrm{~mm} / \mathrm{mC}^{\circ}$ Beta FAZER $\quad-0,04 \mathrm{~mm} / \mathrm{mC}^{\circ}$ STABI pipe $\quad \mathbf{- 0 , 0 3} \mathbf{m m} / \mathrm{mC}^{\circ}$

INCREASED RESISTANCE TO PRESSURE AND HIGH

THERMAL STABILITY

(through the use of innovative technologies, the new material, thermo-stabilized polypropylene PPRCT is 1.7 times stronger than standard polypropylene PP-R)

INCREASED FLOW

(By reducing the wall thickness of the pipe, the capacity of flow is 20% while maintaining the same load capacity)

Characteristic of pipes:

Thermo-stabilized polypropylene pipes with high capacity and low coefficient of linear expansion.

material	$:$ PP-RCT/ PPRCTGF/ PP-RCT/ PP-R100
series	$:$ SDR9/S4
standard	$:$ EN ISO 15874, SKZ HR3.34
colour	$:$ light-grey, green, white
colour marking	$:$ without any stripes
pipe length	$: 4 \mathrm{~m}$
bar code	$:$ yes

Scope:

- pressure pipelines for cold and hot potable water;
- low and high-temperature radiator heating;
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure
- pipeline networks for connection to heat pumps;
- connections to heating stations and distribution units

Working pressure at $\mathbf{5 0}$ years of operation:

The working pressure Bar	Application Classes				
	Hot Water Supply		Radiator heating		Cold Water
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class $2\left(70^{\circ} \mathrm{C}\right)$	Class 4	Class 5	
4	+	+	+	+	
6	+	+	+	+	
8	+	+	+	-	
10	-	-	-	-	

(+) applied
$(-)$ not recommended or required a recalculation of life cycle

Pipe technical specifications :

ITEM. № 4m	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	PIPE WALL S (mm)	$\begin{gathered} \text { INSIDE } \\ \text { DIAMETER } \\ \text { dj(mm) } \end{gathered}$	PACKING (meters)	WEIGHT (kg/m)	DN
09020	20	2,3	15,4	100	0,133	15
09025	25	2,8	19,2	100	0,200	20
09032	32	3,6	24,6	60	0,320	25
09040	40	4,5	31,0	40	0,490	32
09050	50	5,6	38,6	24	0,765	40
09063	63	7,1	48,8	16	1,197	50
09075	75	8,4	58,2	12	1,767	50
09090	90	10,1	69,8	8	2,548	65

GALLAPLAST ${ }^{\circledR}$ Beta FAZIER PIPE SDR 7,4/ S3,2

Characteristic of pipes:

Thermo-stabilized polypropylene pipes with high capacity and low coefficient of linear expansion.
material
: PP-RCT/ PPRCTGF/ PP-RCT/ PP-R100
series
: SDR7,4/S3,2
standard : EN ISO 15874, SKZ HR3.34
colour : light-grey, green, white
colour marking
: without any stripes
pipe length
: 4 m
bar code
: yes

Scope:

- pressure pipelines for cold and hot potable water;
- low and high-temperature radiator heating;
- process industrial pipelines for corrosive media, for chemical resistance and required operating temperature and pressure,
- pipeline networks for connection to heat pumps;
- connections to heating stations and distribution units

Working pressure at 50 years of operation:

The working pressure Bar	Application Classes				
	Hot Wat	Supply	Radi	ating	Cold Water
	Class $1\left(60^{\circ} \mathrm{C}\right)$	Class $2\left(70^{\circ} \mathrm{C}\right)$	Class 4	Class 5	Supply
4	+	+	+	+	+
6	+	+	+	+	
8	+	+	+	+	
10	+	+	+	-	

$(+)$ applied
$(-)$ not recommended or required a recalculation of life cycle

Pipe technical specifications :

ITEM. № 4m	$\begin{aligned} & \text { SIZE } \\ & \text { D (mm) } \end{aligned}$	PIPE WALL S (mm)	$\begin{gathered} \text { INSIDE } \\ \text { DIAMETER } \\ \text { dj(mm) } \end{gathered}$	PACKING (meters)	WEICHT (kg/m)	DN
10020	20	2,8	14,4	100	0,155	15
10025	25	3,5	18,0	100	0,237	20
10032	32	4,4	23,2	60	0,375	25
10040	40	5,5	29,0	40	0,574	32
10050	50	6,9	36,2	24	0,890	40
10063	63	8,6	45,8	16	1,390	40
10075	75	10,3	54,4	12	2,070	50
10090	90	12,3	65,4	8	3,050	65

ADVANTAGES:

PROFITABLE PRICE
QUICK INSTALLATION (do not require cleaning cover layer)

LOW EXPANSION

standard pipe $\mathbf{- 0 , 1 5} \mathrm{mm} / \mathrm{mC}^{\circ}$ Beta FAZER $-0,04 \mathrm{~mm} / \mathrm{mC}^{\circ}$ STABI pipe $\quad \mathbf{- 0 , 0 3} \mathbf{m m} / \mathrm{mC}^{\circ}$

INCREASED RESISTANCE TO PRESSURE AND HIGH THERMAL STABILITY
(through the use of innovative technologies, the new material, thermo-stabilized polypropylene PP-RCT is 1.7 times stronger than standard polypropylene PP-R)

INCREASED FLOW

(By reducing the wall thickness of the pipe, the capacity of flow is 20% while maintaining the same load capacity)

STABI PIPE Pn25

PIPES IN ROLLS

GALLAPLAST ${ }^{\circledR}$ Beta PPR PIPE SDR 11/S5

Thermo-stabilized polypropylene pipes with high capacity.	
material	$:$ PP-RCT
series	$:$ SDR7,4/S3,2
standard	$:$ EN ISO 15874, SKZ HR3.34
colour	$:$ dark-grey

Scope:

- for underfloor heating and low temperature radiatorsheat systems class application $4\left(\mathrm{~T}_{\text {oper.max }}=70^{\circ} \mathrm{C}, \mathrm{T}_{\text {mal }}=100^{\circ} \mathrm{C}, \mathrm{P}_{\text {opermax }}=7 \mathrm{Bar}\right)$;
- for high-temperature radiator heating systems class application $5\left(\mathrm{~T}_{\text {oper.max }}=90^{\circ} \mathrm{C}, \mathrm{T}_{\text {mal }}=100^{\circ} \mathrm{C}, \mathrm{P}_{\text {opermax }}=5.8 \mathrm{Bar}\right)$;
- pressure pipelines for cold potable water (10Bar) and hot potable water $\left(\mathrm{T}_{\text {oper.max }}=70^{\circ} \mathrm{C}, \mathrm{P}_{\text {oper.max }}=6 \mathrm{Bar}\right)$. connections of traditional type, and also, header piping lay-out.

Pipe technical specifications :

ITEM. No	SIZE	PIPE WALL	INSIDE DIAMETER $\mathbf{d j}(\mathrm{mm})$	PACKING (meters)	WEIGHT $(\mathrm{kg} / \mathrm{m})$	DN
11016	16	1,8	12,0	100	0,080	12
11017	16	1,8	12,0	200	0,080	12
11020	20	1,8	16,0	100	0,105	15
11021	20	1,8	16,0	200	0,105	15

GALLAPLAST ${ }^{\circledR}$ Beta PPR PIPE SDR 7,4/ S3,2

Thermo-stabilized polypropylene pipes with high capacity.

material	$:$ PP-RCT
series	$:$ DR7,4 / S3,2
standard	$:$ EN ISO 15874, SKZ 3.34, Гост P 52134
colour	$:$ dark-grey

Scope::

- pressure pipelines for cold potable water (10Bar) and hot potable water $\left(\mathrm{T}_{\text {oper.max }}=70^{\circ} \mathrm{C}, \mathrm{P}_{\text {oper.max }}=10 \mathrm{Bar}\right)$.
- for radiator heating systems (flow pipes to radiators)

$$
\left(\mathrm{T}_{\text {oper.max }}=90^{\circ} \mathrm{C}, \mathrm{P}_{\text {oper.max }}=8 \mathrm{Bar} ; \mathrm{T}_{\text {mal }}=110^{\circ} \mathrm{C}\right)
$$

- connections of traditional type, and also, header piping lay-out.

Pipe technical specifications:

ITEM. No	SIZE	PIPE WALL	INSIDE DIAMETER $\mathbf{d j}(\mathrm{mm})$	PACKING $($ (meters)	WEICHT $(\mathrm{kg} / \mathrm{m})$	DN
12016	16	2,2	11,6	100	0,092	12
12017	16	2,2	11,6	200	0,092	12
12020	20	2,8	14,4	100	0,144	15
12021	20	2,8	14,4	200	0,144	15

GALLAPLAST ${ }^{\circledR}$ pipes comparative chart

	Pipes of material PP-R 100					Thermo-stabilized polypropylene pipes PP-RCT					
Product name	STANDARD Pn10/SDR11/S5						$\begin{aligned} & \tilde{N} \\ & \tilde{n} \\ & \underset{\sim}{n} \\ & \tilde{\sim} \\ & \hat{N} \\ & \tilde{n} \\ & \tilde{0} \\ & \tilde{0} \end{aligned}$		$\begin{aligned} & \tilde{N} \\ & \tilde{\sim} \\ & \underset{\sim}{N} \\ & \tilde{N} \\ & \tilde{\sim} \\ & \tilde{N} \\ & \underset{N}{N} \\ & \stackrel{\pi}{0} \end{aligned}$		
Maximum permitted pressure (Bar) with strength reserve factor $\mathrm{K}=1.25$											
Constant temperature $\left(20^{\circ} \mathrm{C}\right)$ for 50 years	16	25	32	25	30	23	28	23	28	18	28
Constant temperature $\left(70^{\circ} \mathrm{C}\right)$ for 50 years	5	8	10	8	10	10	12,7	10	12,7	8	12,7
Maximum permitted pressure (Bar) for different operation classes											
Hot water supply $\left(60^{\circ} \mathrm{C}\right)$ application class - 1 life period 50 years	6	9,5	12	10	12	9	11	9	11	7	11
Hot water supply $\left(70^{\circ} \mathrm{C}\right)$ application class - 2 life period 50 years	4	6,5	8,5	6,5	8,5	8,5	10	8,5	10	6,8	10
High Underfloor Heating application class - 4 life period 50 years	6,5	10	13	10	13	9	11	9	11	7	11
High Temperature Radiators application class - 5 life period 50 years	3,8	5	7	5	7	7	9	7	9	5	9
Basic parameters											
Coefficient of Thermal Expansion $\left(\mathrm{mm} / \mathrm{mC}^{\circ}\right)$	0,15	0,15	0,15	0,04	0,03	0,15	0,15	0,04	0,04	0,15	0,15
Installation conditions					4						

Pipes marking:

RELIABLE PIPING SYSTEMS

GALLAPLAST ${ }^{\text {® FITTINGS }}$

COMPENSATION PIECE

ITEM. No	SIZE $\mathrm{D}(\mathbf{m m})$	PACKING (pcs)	WEIGHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{1 6 0 1 6}$	16	10	0,09
$\mathbf{1 6 0 2 0}$	20	10	0,12
$\mathbf{1 6 0 2 5}$	25	10	0,25
$\mathbf{1 6 0 3 2}$	32	10	0,47
$\mathbf{1 6 0 4 0}$	40	5	0,89

OVERBRINGE-BOW

ITEM. №	SIZE $\mathbf{D}(\mathbf{m m})$	PACKING (pcs)	WEICHT (kg/pcs)
$\mathbf{1 7 0 1 6}$	16	50	0,04
$\mathbf{1 7 0 2 0}$	20	50	0,06
$\mathbf{1 7 0 2 5}$	25	50	0,09
$\mathbf{1 7 0 3 2}$	32	20	0,17
$\mathbf{1 7 0 4 0}$	40	10	0,25

90° ELBOW

ITEM. №	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEIGHT (kg/pcs)
$\mathbf{1 8 0 1 6}$	16	200	0,01
$\mathbf{1 8 0 2 0}$	20	200	0,02
$\mathbf{1 8 0 2 5}$	25	100	0,02
$\mathbf{1 8 0 3 2}$	32	50	0,05
$\mathbf{1 8 0 4 0}$	40	25	0,08
$\mathbf{1 8 0 5 0}$	50	10	0,14
$\mathbf{1 8 0 6 3}$	63	5	0,29
$\mathbf{1 8 0 7 5}$	75	5	0,44
$\mathbf{1 8 0 9 0}$	90	2	0,78
$\mathbf{1 8 1 1 0}$	110	1	1,41

45° ELBOW

ITEM. №	SIZE $\mathbf{D}(\mathbf{m m})$	PACKING (pcs)	WEICHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{1 9 0 1 6}$	16	200	0,01
$\mathbf{1 9 0 2 0}$	20	200	0,02
$\mathbf{1 9 0 2 5}$	25	100	0,02
$\mathbf{1 9 0 3 2}$	32	50	0,03
$\mathbf{1 9 0 4 0}$	40	25	0,05
$\mathbf{1 9 0 5 0}$	50	10	0,10
$\mathbf{1 9 0 6 3}$	63	5	0,22
$\mathbf{1 9 0 7 5}$	75	5	0,34
$\mathbf{1 9 0 9 0}$	90	2	0,56
$\mathbf{1 9 1 1 0}$	110	1	1,00

TE PIECE

ITEM. No	SIZE $\mathbf{D}(\mathbf{m m})$	PACKING (pcs)	WEICHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{2 2 0 1 6}$	16	200	0,01
$\mathbf{2 2 0 2 0}$	20	100	0,02
$\mathbf{2 2 0 2 5}$	25	100	0,03
$\mathbf{2 2 0 3 2}$	32	50	0,06
$\mathbf{2 2 0 4 0}$	40	25	0,08
$\mathbf{2 2 0 5 0}$	50	10	0,17
$\mathbf{2 2 0 6 3}$	63	5	0,35
$\mathbf{2 2 0 7 5}$	75	5	0,50
$\mathbf{2 2 0 9 0}$	90	2	1,00
$\mathbf{2 2 1 1 0}$	110	1	1,72

INEQUAL TE PIECE

ITEM. No	SIZE D(mm)	PACKING (pcs)	WEIGHT (kg/pcs)
$\mathbf{2 3 2 0 1 6}$	$20-16-20$	200	0,02
$\mathbf{2 3 2 5 1 6}$	$25-16-25$	100	0,04
$\mathbf{2 3 2 5 2 0}$	$25-20-25$	100	0,04
$\mathbf{2 3 3 2 1 6}$	$32-16-32$	100	0,04
$\mathbf{2 3 3 2 2 0}$	$32-20-32$	50	0,05
$\mathbf{2 3 3 2 2 5}$	$32-25-32$	50	0,07
$\mathbf{2 3 4 0 2 0}$	$40-20-40$	25	0,08
$\mathbf{2 3 4 0 2 5}$	$40-25-40$	25	0,08
$\mathbf{2 3 4 0 3 2}$	$40-32-40$	25	0,09
$\mathbf{2 3 5 0 2 0}$	$50-20-50$	10	0,14
$\mathbf{2 3 5 0 2 5}$	$50-25-50$	10	0,13
$\mathbf{2 3 5 0 3 2}$	$50-32-50$	10	0,15
$\mathbf{2 3 5 0 4 0}$	$50-40-50$	10	0,14
$\mathbf{2 3 6 3 2 0}$	$63-20-63$	5	0,33
$\mathbf{2 3 6 3 2 5}$	$63-25-63$	5	0,33
$\mathbf{2 3 6 3 3 2}$	$63-32-63$	5	0,32
$\mathbf{2 3 6 3 4 0}$	$63-40-63$	5	0,35
$\mathbf{2 3 6 3 5 0}$	$63-50-63$	5	0,39
$\mathbf{2 3 7 5 2 5}$	$75-25-75$	5	0,39
$\mathbf{2 3 7 5 3 2}$	$75-32-75$	5	0,40
$\mathbf{2 3 7 5 4 0}$	$75-40-75$	5	0,43
$\mathbf{2 3 7 5 5 0}$	$75-50-75$	5	0,41
$\mathbf{2 3 7 5 6 3}$	$75-63-75$	5	0,44
$\mathbf{2 3 9 0 5 0}$	$90-50-90$	2	0,70
$\mathbf{2 3 9 0 6 3}$	$90-63-90$	2	0,79
$\mathbf{2 3 9 0 7 5}$	$90-75-90$	2	0,85
$\mathbf{2 3 9 1 6 3}$	$110-63-110$	1	1,67
$\mathbf{2 3 9 1 7 5}$	$110-75-110$	1	1,63
$\mathbf{2 3 9 1 9 0}$	$110-90-110$	1	1,65

\qquad

90º ELBOW MALE-FEMALE

ITEM. №	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEICHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{2 0 0 1 6}$	16	200	0,01
$\mathbf{2 0 0 2 0}$	20	200	0,02
$\mathbf{2 0 0 2 5}$	25	100	0,03
$\mathbf{2 0 0 3 2}$	32	50	0,05

45․ ELBOW MALE-FEMALE

	SIZE D (mm)					PACKING (pcs)	WEIGHT (kg/pcs)

GALLAPLAST © FITTINGS

SOCKET

ITEM．№	SIZE $\mathbf{D}(\mathbf{m m})$	PACKING （pcs）	WEIGHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{2 4 0 1 6}$	16	200	0,01
$\mathbf{2 4 0 2 0}$	20	200	0,02
$\mathbf{2 4 0 2 5}$	25	100	0,02
$\mathbf{2 4 0 3 2}$	32	50	0,03
$\mathbf{2 4 0 4 0}$	40	25	0,04
$\mathbf{2 4 0 5 0}$	50	10	0,08
$\mathbf{2 4 0 6 3}$	63	5	0,15
$\mathbf{2 4 0 7 5}$	75	5	0,21
$\mathbf{2 4 0 9 0}$	90	2	0,32
$\mathbf{2 4 1 1 0}$	110	2	0,59

REDUCER

ITEM．№	SIZE $\mathbf{D}(\mathbf{m m})$	PACKING （pcs）	WEIGHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{2 5 2 0 1 6}$	$20-16$	200	0,01
$\mathbf{2 5 2 5 1 6}$	$25-16$	200	0,01
$\mathbf{2 5 2 5 2 0}$	$25-20$	200	0,01
$\mathbf{2 5 3 2 2 0}$	$32-20$	50	0,02
$\mathbf{2 5 3 2 2 5}$	$32-25$	50	0,02
$\mathbf{2 5 4 0 2 0}$	$40-20$	25	0,02
$\mathbf{2 5 4 0 2 5}$	$40-25$	25	0,02
$\mathbf{2 5 4 0 3 2}$	$40-32$	25	0,03
$\mathbf{2 5 5 0 3 2}$	$50-32$	10	0,04
$\mathbf{2 5 5 0 4 0}$	$50-40$	10	0,05
$\mathbf{2 5 6 3 4 0}$	$63-40$	5	0,08
$\mathbf{2 5 6 3 5 0}$	$63-50$	5	0,11
$\mathbf{2 5 7 5 4 0}$	$75-40$	5	0,10
$\mathbf{2 5 7 5 5 0}$	$75-50$	5	0,11
$\mathbf{2 5 7 5 6 3}$	$75-63$	5	0,15
$\mathbf{2 5 9 0 5 0}$	$90-50$	5	0,17
$\mathbf{2 5 9 0 6 3}$	$90-63$	2	0,16
$\mathbf{2 5 9 0 7 5}$	$90-75$	2	0,19
$\mathbf{2 5 9 1 1 0}$	$110-90$	1	0,21

BLANKING CAP

ITEM．№	SIZE D（ $\mathbf{m m}$ ）	PACKING (pcs)	WEIGHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{2 6 0 1 6}$	16	200	0,01
$\mathbf{2 6 0 2 0}$	20	200	0,01
$\mathbf{2 6 0 2 5}$	25	100	0,01
$\mathbf{2 6 0 3 2}$	32	50	0,02
$\mathbf{2 6 0 4 0}$	40	25	0,04
$\mathbf{2 6 0 5 0}$	50	10	0,06
$\mathbf{2 6 0 6 3}$	63	5	0,12
$\mathbf{2 6 0 7 5}$	75	5	0,17
$\mathbf{2 6 0 9 0}$	90	2	0,32

MALE THREATED END PLUG

ITEM．№	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	$\underset{\text {（pcs）}}{\text { PACKING }}$	WEIGHT （kg／pcs）
4401	$1 / 2^{\prime \prime}$ red	200	0，007
4402	$1 / 2^{\prime \prime}$ blue	200	0，007
4403	$1 / 2^{\prime \prime}$ grey	200	0，006
44004	$3 / 4{ }^{\text {＂}}$ grey	200	0，01

MALE THREATED ADAPTOR

ITEM．№	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \text { PACKING } \\ (\mathrm{pcs}) \end{gathered}$	WEIGHT （kg／pcs）
28016	$16 \times 1 / 2{ }^{\prime \prime}$	50	0，06
280201	$20 \times 1 / 2{ }^{1}$	50	0，05
280202	$20 \times 3 / 4$	50	0，09
280251	$25 \times 1 /{ }^{\prime \prime}$	50	0，06
280252	$25 \times 3 / 4{ }^{\text {／}}$	50	0，09
280253	25×1＂	50	0，12
280321	$32 \times 3 / 4$	25	0，18
280322	32×1＂	25	0，15
28040	$40 \times 11 / 4$	15	0，21
28050	$50 \times 11 / 2^{\prime \prime}$	10	0，46
28063	63×2	5	0，69
28075	$75 \times 21 /{ }^{\prime \prime}$	5	1，02
28090	90×3＇	2	1，53

FEMALE THREATED ELBOW $90^{\circ} \mathrm{TE}$

ITEM．№	$\begin{gathered} \text { SIZE } \\ \mathrm{D}(\mathrm{~mm}) \end{gathered}$	PACKING （pcs）	WEIGHT （kg／pcs）
29016	$16 \times 1 / 2$	50	0，06
290201	$20 \times 1 /{ }^{\prime \prime}$	50	0，05
290202	$20 \times 3 / 4{ }^{\prime \prime}$	50	0，10
290251	$25 \times 1 /{ }^{\prime \prime}$	50	0，06
290252	$25 \times 3 / 4{ }^{\prime \prime}$	50	0，10
290321	$32 \times 3 / 4$	50	0，09

MALE THREATED ELBOW $90^{\circ} \mathrm{TE}$
FEMALE THREATED ADAPTOR

ITEM．№	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	PACKING （pcs）	WEIGHT （kg／pcs）
27016	$16 \times 1 / 2{ }^{\prime \prime}$	50	0，04
270201	$20 \times 1 / 2^{\prime \prime}$	50	0，05
270202	$20 \times 3 / 4$	50	0，07
270251	$25 \times 1 /{ }^{\prime \prime}$	50	0，05
270252	$25 \times 3 / 4{ }^{\prime \prime}$	50	0，08
270321	$32 \times 3 / 4$	25	0，14
270322	32×1＂	25	0，12
27040	$40 \times 11 / 4{ }^{\prime \prime}$	15	0，21
27050	$50 \times 11 / 2^{\prime \prime}$	10	0，45
27063	63×2	5	0，78
27075	$75 \times 21 / 2^{\prime \prime}$	5	1，22
27090	90×3＂	2	1，98

ITEM．№	$\begin{gathered} \text { SIZE } \\ \mathrm{D}(\mathrm{~mm}) \end{gathered}$	PACKING （pcs）	WEIGHT （kg／pcs）
30016	$16 \times 1 /{ }^{\prime \prime}$	50	0，07
300201	$20 \times 1 / 2^{\prime \prime}$	50	0，07
300202	$20 \times 3 / 4{ }^{\prime \prime}$	50	0，08
300251	$25 \times 1 /{ }^{\prime \prime}$	50	0，08
300252	$25 \times 3 / 4{ }^{\prime \prime}$	50	0，09
300321	$32 \times 3 / 4$	50	0，11
300322	32×1＂	50	0，14

GALLAPLAST © FITTINGS

SOCKET WITH NUT

	SOCKET WITH NU			
	ITEM. №	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	$\underset{\text { (pcs) }}{\text { PACKING }}$	WEIGHT (kg/pcs)
	37016	$16 \times 1 /{ }^{\prime \prime}$	100	0,02
	37017	$16 \times 3 / 4^{\prime \prime}$	100	0,03
	37020	$20 \times 3 / 4{ }^{\prime \prime}$	100	0,04
	37025	25×1 "	100	0,06
	37032	$32 \times 11 / 4^{\prime \prime}$	25	0,08

COUPLING JOINT ADAPTER
FEMALE THREATED TE

ITEM. №	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	PACKING (pcs)	WEIGHT (kg/pcs)
32016	$16 \times 1 / 2 \mathrm{x} 16$	50	0,07
320201	$20 \times 1 / 2 \times 20$	50	0,07
320202	$20 \times 3 / 4 \times 20$	50	0,08
320251	$25 \times 1 / 2 \times 25$	50	0,08
320252	$25 \times 3 / 4 \times 25$	50	0,09
320321	$32 \times 3 / 4 \times 32$	50	0,11
320322	$32 \times 1^{1 \prime} \times 32$	50	0,14

ITEM. №	$\begin{gathered} \text { SIZE } \\ \mathrm{D}(\mathrm{~mm}) \end{gathered}$	PACKING (pcs)	WEIGHT (kg/pcs)
380161	$16 \times 1 / 2^{\prime \prime}$	50	0,03
380162	$16 \times 3 / 4{ }^{\prime \prime}$	50	0,04
380201	$20 \times 1 / 2^{\prime \prime}$	50	0,04
380202	$20 \times 3 / 4{ }^{\prime \prime}$	25	0,05
380251	$25 \times 3 / 4{ }^{\prime \prime}$	25	0,06
380252	25×1 "	25	0,08
380321	32×1 "	25	0,11
380322	$32 \times 11 / 4{ }^{\prime \prime}$	25	0,11

TAB CONNECTING

| ITEM. № | | $\begin{array}{c}\text { SIZE } \\ \mathrm{D}(\mathrm{mm})\end{array}$ | | $\begin{array}{c}\text { PACKING } \\ (\mathrm{pcs})\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}WEICHT

(\mathrm{kg} / \mathrm{pcs})\end{array}\right]\)

WALL COMPLET

0	WALL COMPLET			
	ITEM. No	$\begin{gathered} \text { SIZE } \\ \mathbf{D}(\mathrm{mm}) \end{gathered}$	$\underset{\text { (pos) }}{\text { PACKING }}$	WEIGHT
	34020	$20 \times 1 / 2^{\prime \prime}$	1	0,23

MALE THREATED ADAPTOR WITH NUT

	ITEM. №	$\begin{gathered} \text { SIZE } \\ \mathrm{D}(\mathrm{~mm}) \end{gathered}$	PACKING	WEIGHT (kg/pcs)
	35020	$20 \times 1 / 2$	50	0,09
	35025	$25 \times 3 / 4{ }^{\prime \prime}$	50	0,14
	35032	$32 \times 1{ }^{\prime \prime}$	25	0,24

ITEM. No	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEIGHT (kg/pcs)
$\mathbf{4 0 0 2 0}$	20	30	0,16
$\mathbf{4 0 0 2 5}$	25	30	0,22
$\mathbf{4 0 0 3 2}$	32	30	0,40
$\mathbf{4 0 0 4 0}$	40	10	0,57
$\mathbf{4 0 0 5 0}$	50	5	0,78
$\mathbf{4 0 0 6 3}$	63	5	1,43

BALL VALVE

FEMALE THREATED ADAPTOR WITH NUT

ITEM. №	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEICHT $(\mathrm{kg} / \mathrm{pcs})$
36020	$20 \times 1 / 2^{\prime \prime}$	50	0,06
36025	$25 \times 3 / 4^{\prime \prime}$	50	0,11
36032	$32 \times 1 "$	25	0,24

ITEM. №	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEICHT (kg/pcs)
$\mathbf{4 1 0 2 0}$	20	30	0,14
$\mathbf{4 1 0 2 5}$	25	30	0,19
$\mathbf{4 1 0 3 2}$	32	30	0,32
$\mathbf{4 1 0 4 0}$	40	10	0,58
$\mathbf{4 1 0 5 0}$	50	5	0,89
$\mathbf{4 1 0 6 3}$	63	5	1,32

๔allaplasヒ
 RELIABLE PIPING SYSTEMS

GALLAPLAST © FITTINGS

FILTER

ITEM. №	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEIGHT (kg/pcs)
$\mathbf{4 2 0 2 0}$	20	25	0,11
$\mathbf{4 2 0 2 5}$	25	25	0,10
42032	32	10	0,12

PIPEWORK FOR HEATER

ITEM. №	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { PACKING } \\ & \text { (pcs) } \end{aligned}$	WEIGHT (kg/pcs)
43016	16	1	0,07
43020	20	1	0,01

HANGER

ITEM. №	SIZE $\mathbf{D}(\mathrm{mm})$	PACKING (pcs)	WEIGHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{4 5 0 1 6}$	16	200	0,004
$\mathbf{4 5 0 2 0}$	20	200	0,005
$\mathbf{4 5 0 2 5}$	25	100	0,006
$\mathbf{4 5 0 3 2}$	32	100	0,008
$\mathbf{4 5 0 2 1 6}$	2×16	100	0,013
$\mathbf{4 5 0 2 2 0}$	2×20	100	0,018
$\mathbf{4 5 0 2 2 5}$	2×25	50	0,023
$\mathbf{4 5 0 2 3 2}$	2×32	50	0,028
$\mathbf{4 5 0 4 0}$	40	50	0,019
$\mathbf{4 5 0 5 0}$	50	50	0,025
$\mathbf{4 5 0 6 3}$	63	25	0,050
$\mathbf{4 5 0 7 5}$	75	25	0,104
$\mathbf{4 5 0 9 0}$	90	10	0,125
$\mathbf{4 5 1 1 0}$	110	10	0,151

CROSSPOINT ITEM

ITEM. №	SIZE $\mathbf{D}(\mathbf{m m})$	PACKING (pcs)	WEIGHT $(\mathrm{kg} / \mathrm{pcs})$
$\mathbf{4 6 0 2 0}$	D20	50	0,025
$\mathbf{4 6 0 2 5}$	D25	50	0,044
$\mathbf{4 6 0 3 2}$	D32	25	0,066
$\mathbf{4 6 0 4 0}$	D40	25	0,104

MALE WELD IN SADDLE

ITEM. No	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEIGHT (kg/pcs)
$\mathbf{4 7 6 3 1}$	$63 \times 3 / 4$	10	0,135
$\mathbf{4 7 7 5 1}$	$75 \times 3 / 4$	10	0,135
$\mathbf{4 7 9 0 1}$	$90 \times 3 / 4$	10	0,135

FEMALE WELD IN SADDLE

ITEM. No	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEIGHT (kg/pcs)
$\mathbf{4 7 6 3 1}$	$63 \times 3 / 4$	10	0,100
$\mathbf{4 7 7 5 1}$	$75 \times 3 / 4$	10	0,100
$\mathbf{4 7 9 0 1}$	$90 \times 3 / 4^{\prime \prime}$	10	0,100

WELD IN SADDLE

ITEM. №	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEIGHT (kg/pcs)
$\mathbf{4 7 6 3 0}$	$63-32$	10	0,040
$\mathbf{4 7 7 5 0}$	$75-32$	10	0,040
$\mathbf{4 7 9 0 0}$	$90-32$	10	0,040

STEEL CLAMP WITH RUBBER SEAL

ITEM. №	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEICHT $(\mathrm{kg} / \mathrm{pcs})$
49016	$15-19$	150	0,048
49020	$20-23$	100	0,063
49025	$25-28$	150	0,085
49032	$32-35$	75	0,118
49040	$40-43$	50	0,125
49050	$44-50$	50	0,138
49063	$57-63$	50	0,143
49075	$74-80$	50	0,155
49090	$83-91$	50	0,178
49110	$108-114$	25	0,254

HEATING SYSTEM COLLECTOR

| ITEM. No | $\begin{array}{c}\text { SIZE } \\ \mathrm{D}(\mathrm{mm})\end{array}$ | OUTPUTS | |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}PACKING

(pcs)\end{array}\right]\)

	CORRUGATED HOUSING			
	ITEM. №	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	COLOR	PACKING (meter)
	62001	¢21	blue	50
	62002	$\varnothing 25$	blue	25
	62003	821	red	50
	62004	$\varnothing 25$	red	25

	WELDING UNIT 1400W		
	ITEM. №		WEIGHT (kg/pcs)
	50001	Welding unit 1400 w double heads $16,20,25,32,40$ 6 mm wrench.	7,500

CONNECTORS FOR PPR-CT PIPES PIPE IN ROLL

ITEM. №	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	for pipes (mm)	PACKING (pcs)
63001	$16 \times 1 /{ }^{\prime \prime}$	$16 \times 2,0$	60
63002	$16 \times 3 / 4{ }^{\prime \prime}$	$16 \times 2,0$	60
63003	$20 \times 1 /{ }^{\prime \prime}$	$20 \times 2,0$	60
63004	$20 \times 3 / 4$	$20 \times 2,0$	60
63005	18*	$16 \times 2,2$	25
63006	18*	$20 \times 2,8$	25
63007	22*	$25 \times 3,5$	25

HEAD FOR WELDING UNIT

ITEM. №	SIZE $\mathrm{D}(\mathrm{mm})$	PACKING (pcs)	WEICHT (kg/pcs)
$\mathbf{5 1 0 1 6}$	16	1	0,07
$\mathbf{5 1 0 2 0}$	20	1	0,09
$\mathbf{5 1 0 2 5}$	25	1	0,13
$\mathbf{5 1 0 3 2}$	32	1	0,20
$\mathbf{5 1 0 4 0}$	40	1	0,30
$\mathbf{5 1 0 5 0}$	50	1	0,42
$\mathbf{5 1 0 6 3}$	63	1	0,64
$\mathbf{5 1 0 7 5}$	75	1	1,06

CONDITIONING DEVICE FOR STABI PIPES

MALE THREATED ADAPTOR

	ITEM. №	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	for connection	PACKING (pcs)
	64001	$18 \times 1 / 2{ }^{1}$	63005	50
	64002	$18 \times 3 / 4{ }^{1}$	63006	25
	64004	$22 \times 3 / 4$	63007	25
	64004	22×1 "		25

ITEM. №					SIZE D (mm)	PACKING (pcs)	WEICHT (kg/pcs)
$\mathbf{5 2 0 0 1}$	$16-20$	1	0,15				
$\mathbf{5 2 0 0 2}$	$20-25$	1	0,19				
$\mathbf{5 2 0 0 3}$	$25-32$	1	0,23				
$\mathbf{5 2 0 0 4}$	$32-40$	1	0,31				
$\mathbf{5 2 0 0 5}$	50	1	0,46				
$\mathbf{5 2 0 0 6}$	63	1	0,51				
$\mathbf{5 2 0 0 7}$	75	1	0,64				

	FEMALE THREATED			ADAPTOR
	ITEM. No	$\begin{gathered} \text { SIZE } \\ \mathrm{D}(\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { for } \\ \text { connection } \end{gathered}$	$\underset{\text { (pcs) }}{\text { PACKING }}$
	65001	$18 \times 1 / 2^{\prime \prime}$	63005	50
	65002	$18 \times 3 / 4{ }^{\prime \prime}$	63006	25
	65004	$22 \times 3 / 4{ }^{\prime \prime}$	63007	25
	65004	$22 \times 1{ }^{1}$	63007	25

	MILLING CUTTER FOR SADDLE			
	ITEM. No	$\begin{gathered} \text { SIZE } \\ \mathrm{D}(\mathrm{~mm}) \end{gathered}$	PACKING	WEIGHT (kg/pos)
	54001	32	1	0,152

DISTRIBUTIVE COLLECTOR

ITEM. №	$\begin{aligned} & \text { SIZE } \\ & \mathrm{D}(\mathrm{~mm}) \end{aligned}$	OUTPUTS	PACKING (pcs)
66001	$3 / 4{ }^{\prime \prime} \times 1 / 2^{\prime \prime}$	2	14
66002	$3 / 4{ }^{\prime \prime} \times 1 / 2^{\prime \prime}$	3	9
66003	$3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$	4	7
66004	$1^{\prime \prime} \times 1 / 2^{\prime \prime}$	2	14
66005	$1^{\prime \prime} \times 1 / 2^{\prime \prime}$	3	9
66006	$1{ }^{\prime \prime} \times 1 / 2^{\prime \prime}$	4	7

WELDING MACHINE PREPARATION FOR WORK

Reliable connections of GallaPlast piping systems require using the original welding equipment and tools, as offered by GallaPlast Company.

Prior to starting welding operations, mount replaceable welding heads. It is admissible to mount not more than two welding heads at a time.

Whenever mounting welding heads, take measures so that the surfaces of welding heads would not be outside the edge of heating element of the welding unit.

Welding heads shall be clean, therefore check the heads before mounting. If necessary, use some soft cloth wetted with alcohol to clean the heads.

It should be remembered that welding units are covered with special Teflon layer, which shall not be damaged. Any damaged welding heads are to be immediately replaced.

Switch on the welding unit and check whether the green indicator of power supply is on. At the same time, the red indicator of ambient temperature lights up. Depending on ambient temperature, heating the welding unit lasts from 10 to 30 minutes. Once the heating of the welding unit is completed, the red indicator of temperature goes off. The welding unit is ready for operation.
From now on, the welding unit automatically maintains temperature level needful for welding.

Attention! The very first welding, and also, any welding after replacement of welding heads shall be started only five minutes after reaching the temperature needful for welding.

The temperature needful for welding is $260^{\circ} \mathrm{C}$.
While operating the welding unit, safety precautions and relevant rules shall be observed.

RELIABLE PIPING SYSTEMS

PREPARATION OF ELEMIENTS FOR CONNECTION

Cut off a pipe at the right angle to its axis.
If required, remove burrs or any swarf and chips formed during the cutting.

Before welding GallaPlast Stabi combination pipes, it is needful to completely remove the aluminium layer. For this purpose, the end of Stabi combination pipe is to be inserted into the guide of conditioning device. The aluminium layer is to be cleaned off together with the upper layer of polypropylene, up to the stop position of the conditioning device. The depth of conditioning up to the stop position determines depth of fusion during the welding.

Any presence of aluminium particles or residual portions of aluminium layer in places to be welded is INADMISSIBLE.

GallaPlast Fazer combination pipes do not require any conditioning.

Only conditioning devices with faultless knives shall be used. Blunt knives are to be replaced by stand-by knives. Further, trial conditioning is required to check proper setting of knives. The knife shall cut off only the outer layer of polypropylene and aluminium layer. Thickness of the inner polypropylene layer shall remain without any changes, which warrants reliable fusion.

CONTACT SOCKET WELDING BY FUSION

The end of a pipe, without any rotating, is to be inserted into the welding head quill, up to the depth of welding, as given in the table and, at the same time, without any rotating, a profiled part is be fit over the opposite side of the welding mandrel, up to the stop position/ until bumping.

Complete the heating according to time shown in the Table. When heating pipes of bigger diameter, it is recommended to fit both the pipe and profiled part onto welding mandrels in slow motions, without applying any considerable force and according to heating progress.

MAJOR DATA OF FUSION				
Outside Diameter of pipe (mm)	Depth of Fusion (mm)	Heating Time (seconds)	$\begin{aligned} & \text { Process } \\ & \text { pause } \\ & \text { (seconds) } \end{aligned}$	Cooling Time (minutes)
16	13,0	5	4	2
20	14,0	6	4	2
25	15,0	7	4	2
32	16,5	8	6	4
40	18,0	12	6	4
50	20,0	18	6	4
63	24,0	24	8	6
75	26,0	30	8	8
90	29,0	40	8	8
110	32,5	50	10	8

Table 4.

Heating time shown in the Table is valid at ambient temperature not lower than $+5^{\circ} \mathrm{C}$. If welding is performed at temperatures lower than $+5^{\circ} \mathrm{C}$, the time for process heating shall be increased by 50%.

Contact socket connection welding of GallaPlast piping elements is admissible at ambient temperatures not lower than $0^{\circ} \mathrm{C}$. The place of fusion is to be protected against any rainfall and dust.

REL\|ABLE PIPING SYSTEMS

CONTACT SOCKET WDLDING BY FUSION

While performing the process of heating, any angular misalignment between the pipe axial line and the heating device axial line exceeding five degrees $\left(5^{\circ}\right)$ is not admissible.

On completing the heating according to its specified time, quickly remove both the pipe and profiled part off the welding elements, and without their rotating, immediately connect them so that the depth of fusion would be covered by the forming overlap / collar. For ease in mounting, that is, for quick orientation of required position of particular profiled part relative to its pipe, it is possible to use the auxiliary reference marking on the profiled part and colour marking line on the pipe.

During the process pause, the position of profiled part relative to its pipe can be adjusted. This adjustment is limited by their alignment only. Any rotating the elements is not admissible. On completing the time of process pause, the fused contact connection shall not be subjected to any alignment.

The process pause is followed by the cooling phase.
Cooling parameters are given in Table 4.
During the cooling phase, it is prohibited to perform any mechanical attack or impact on the pipe or connected part.

On completing the time of cooling, fused integrated elements can be subjected to its rated loading.

OPEN MOUNTING OF PIPES

Open laying is one of the most frequently used types of mounting. However, as pipelines installed both in cellar or living premises remain visible at all times, they shall meet especially high requirements as to their external appearance and stability of shapes.

Stability of shapes depends on properly chosen temperature compensation required for thermal expansion during operation of pipelines, and also, properly installed fasteners, both rigid and slidably mounted ones, as well as proper distance between fasteners.

and pipes without any stabilized layer. Therefore, measures aimed at

As to practical determination of linear thermal expansion and methods of compensation, refer the section on Calculations of Linear Thermal Expansion

MOUNTING IN SHAFTS AND DUCTS

Figure 1

Figure 2

Figure 3

Laying pipes in shafts of buildings is intended, as a rule, to apply different design concepts. Selection of particular design concept depends on selection of pipes to be used. As branch pipes are located in shafts, floor by floor, as well as vertical standpipes, it is necessary to foresee their possible thermal expansion.

Pipes without stabilized layer in mounting standpipes.

While using pipes without stabilized layer in mounting standpipes, it is necessary to provide sufficient space, which is to be available for elastic bend (LS distance as shown in Figures 1, 2 and 3) for each branch pipe, due to thermal expansion of standpipe ($\Delta \mathrm{L}$ elongation) under exposure to high temperatures of hot water supply. This can be provided by means of optimal arrangement of standpipe in shaft (refer Figure 1).

In the event when the sizes of a shaft are not sufficient for optimal arrangement of the standpipe, the standpipe can be installed as shown in Figure 2 or Figure 3. The particular feature of standpipe mounting according to Figure 2 is availability of increased diameter of through passage in the shaft. Diameter of passage shall be selected so that not to obstruct mounting and performance of branch pipes, floor by floor. Providing an elastic bend can be by means of spring elastic compensator (refer Figure 3). Calculations of $\Delta \mathrm{L}$ and LS values are given in the section on Calculations of Linear Thermal Expansion..

Using GallaPlast-Stabi and GallaPlast-Frazer combination pipes for installation of standpipes.

As a rule, when laying the combination pipes for standpipes, these can be installed without taking thermal expansion into consideration. If floor structures are rigid supports for particular standpipe and the distance between them does not exceed 3.0 m , and an additional fastening device is installed before connection with each branch pipe, thermal linear expansion may be neglected. In this case, $\Delta \mathrm{L}$ value is insignificant. Moreover, it is applicable to the pipe section between the points of rigid supports, where it does not have any practical influence on the standpipe, and therefore, the value of LS loses its significance.

If the water temperature is above $70^{\circ} \mathrm{C}$ it is necessary to provide for a small compensator on one of the floors. The size of the compensator should be calculated according to the method written in the "Calculation of linear expansion".

UNDER PLASTERWORK MOUNTING

While laying the piping under plasterwork, thermal expansion of GALLAPLAST PPRCT pipes is not taken into consideration.

To lay the piping under any plaster, pipes made of PPRCT thermal stabilized polypropylene, in coils, are to be used. These pipes are intended both for standard parallel and series connecting, and for piping from the header. Laying the distributing pipeline is provided in its duct in walls, or in wall chases.

If a pipeline is to be insulated according to the existing local norms and standards, or technical requirements towards heating systems, such insulation absorbs linear thermal expansion of the pipes. It is recommended to use insulation made of foam polyethylene, or foam polyurethane. In absence of requirements as to pipeline insulation, it is recommended to lay the pipe into convoluted tube prior its mounting, and the size of the tube as compared to the pipeline is to be bigger by an order. Before plastering the chases, the pipeline shall be fixed by means of plastic or metallic clips, or by plaster applied.

When such pipeline is fixed appropriately, as described above, linear thermal expansion due to thermal loads does not reach any critical values, as it is absorbed by construction material.

FASTIENING TECHNOLOGY

When mounting the piping system, it is needful to take into account thermal expansion of material, i.e. elongation or contraction of pipelines due to exposure to temperatures of water supply. Therefore, the principles of fastening pipes foresee two types of fasteners:

- points for rigid and fixed fasteners;
- sliding points of fasteners, which let motions of a pipeline along its axis, without any damages.

Proper selection between these types of supports guarantees faultless external appearance of pipelines.

Rigid points of fasteners.

The points of rigid fastening divide a pipeline into sections. Thus, direction of elongation is provided due to thermal expansion. Proceeding from calculated data of elongation, size and location of compensator is to be determined.

Rigid fasteners are also provided in places of mounting valves, on the both sides, to avoid exposure of pipeline to mechanical impacts, for operation of valves. Rigid fasteners are to be sufficiently fixed to withstand exposures to forces. Moreover, when selecting material for fastening, measures are to be taken up to prevent any mechanical damage of pipe surfaces.

Sliding points of fastening.

Sliding points of fastening shall be provided so that to allow motions of pipeline in axial direction, without any damages to the pipes.

RELIABLE PIPING SYSTEMS

FASTENING TECHNOLOGY

Recommendations for the installation of hard, sliding attachment points and finding the right place for compensators.

It should be remembered that hard attachment points determine the direction and magnitude of lengthening the pipeline and determine a site on which to set the compensator.

1. First rigid attachment point to establish places of branching pipelines extending from heating stations where pipe diameters are the greatest.
2. Next, the following rigid attachment point is set in the place of installation of fire hits on the border of fire sections.
3. Define sections of pipelines and, depending on their location in the building is determined by the installation location and type of expansion joints (flexible or compensator compensatorwear knee). Compensator size calculated from the value of the linear expansion of the pipeline, located at a specific site.
4. After that, the rate of the selected compensator arranges remaining hard mounting points.
5. Also, remember that hard mounting points are set before and after the valves and fittings to avoid mechanical stress on the pipeline in service.
6. Sliding mounting points installed at providing no slack line. Step is calculated depending on the operating temperature and the type of pipe.

FASTIENING TECHNOLOGY

Installation recommendations for rigid, sliding mounting points and designated compensators while constructing the stand pipe.

During the construction of the water supply or heating risers must be considered in storey building. Depending on the number of floors, operating conditions and type of the selected pipeline extension of the pipeline must be determined. Depending on the result determine the need for the installation of expansion joints.

Some examples for installation of compensators:

CALCULATIONS OF LINEAR EXPANSION

Difference of temperatures during the mounting work and operation of pipelines results in arising of linear thermal expansion or contraction of pipelines. For practical purposes and determination of linear thermal expansion, the formulae and tables given in this section may be used.

The basic values to calculate linear thermal expansion are as follows:

- linear expansion coefficient for pipes to be installed;
- length of pipeline / distance value between rigid points of fastening;
- difference between operation temperature and temperature of mounting.

An example of calculations of linear thermal expansion:

Unit symbol	Name	Value	Measurement unit
α_{1}	Coefficient of linear expansion of combination pipe GALLAPLAST-STABI stabilized with aluminium layer.	0,03	$\mathrm{~mm} / \mathrm{mC}^{\circ}$
α_{2}	Coefficient of linear expansion of combination pipe GALLAPLAT-FAZER and BETA FAZER stabilized with glass-fiber layer.	0,04	$\mathrm{~mm} / \mathrm{mC}^{\circ}$
α_{3}	Coefficient of linear expansion of combination pipe GALLAPLAST STANDARD and GALLAPLAST BETA PPR without stabilized layer.	0,15	$\mathrm{~mm} / \mathrm{mC}^{\circ}$
L	Length of pipeline (distance between rigid points of fastening)	20	m
t_{p}	Operating temperature (temperature of pipeline operation)	60	C°
t_{m}	Temperature during mounting Temper	20	C°
$\Delta \mathrm{t}$	Difference between operating temperature and temperature during mounting	40	C°

Linear expansion $\Delta \mathrm{L}$ is calculated according to the following equation:

$$
\Delta \mathrm{L}=\alpha \times \mathrm{L} \times \Delta \mathrm{t}
$$

Linear expansion $\Delta \mathrm{L}$ for combination pipe GallaPlast-FAZER stabilized with glass-fiber layer, where $\alpha=0.04 \mathrm{~mm} / \mathrm{mC}^{\circ}$, is determined as follows

$$
\Delta \mathrm{L}=0,04 \mathrm{mм} / \mathrm{mC}^{\circ} \times 20 \mathrm{~m} \times 40 \mathrm{C}^{\circ}
$$

$$
\Delta \mathrm{L}=32,0 \text { мм }
$$

LINEAR EXPANSION COMPENSATION

A number of options are available to compensate linear expansion:

Compensation Bend

Elastic Compensator

SP - sliding point
FP - rigid fastening point

ELASTIC COMPENSATOR

Length of elastic compensator is determined on the basis of the following calculations:

An example of calculations of elastic compensator:

Given values and unknown value:

Unit symbol		Name	Value
Ls	Length of elastic compensator	$?$	mm
K	Material specific constant	15	$\mathrm{~mm} / \mathrm{mC}^{\circ}$
D	Outside Diameter of pipeline	40	mm
$\Delta \mathrm{l}$	Linear expansion	32	mm

Length of an elastic compensator is calculated according to the equations:

$$
\mathrm{Ls}=\mathrm{K} \times \sqrt{\mathrm{D} \times \Delta \mathrm{l}}
$$


```
Ls = 537mm
```


COMPENSATOR - COMPENSATOR BEND

An example of calculations of compensator:

Given values and unknown values

| $\begin{array}{c}\text { Unit } \\ \text { symbol }\end{array}$ | | Name | Value |
| :---: | :--- | :---: | :---: | \(\left.\begin{array}{c}Measurement

unit\end{array}\right)\)

Length of compensation bend is calculated as follows:

$\mathrm{Ls}=329 \mathrm{Mm}$

Width of compensation bend is calculated as follows:

Amin $=2 \times \Delta l+S A$

Amin $=2 \times 32 \mathrm{~mm}+150 \mathrm{~mm}$

Amin $=214 \mathrm{MM}$

TABLE: LINEAR EXPANSION

Linear expansion of GALLAPLAST pipes

Grades Pn10; Pn16; Pn20; Beta PPR SDR9; Beta PPR SDR7.4
($\alpha=0,15 \mathrm{~mm} / \mathrm{mC}^{\circ}$)

Linear expansion

Length of pipeline $\mathbf{L}(\mathbf{m})$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
0,5	0,8	1,5	2,3	3,0	3,8	4,5	5,3
0,6	0,9	1,8	2,7	3,6	4,5	5,4	6,3
0,7	1,1	2,1	3,2	4,2	5,3	6,3	7,4
0,8	1,2	2,4	3,6	4,8	6,0	7,2	8,4
0,9	1,4	2,7	4,1	5,4	6,8	8,1	9,5
1	1,5	3,0	4,5	6,0	7,5	9,0	10,5
2	3,0	6,0	9,0	12,0	15,0	18,0	21,0
3	4,5	9,0	13,5	18,0	22,5	27,0	31,5
4	6,0	12,0	18,0	24,0	30,0	36,0	42,0
5	7,5	15,0	22,5	30,0	37,5	45,0	52,5
6	9,0	18,0	27,0	36,0	45,0	54,0	63,0
7	10,5	21,0	31,5	42,0	52,5	63,0	73,5
8	12,0	24,0	36,0	48,0	60,0	72,0	84,0
9	13,5	27,0	40,5	54,0	67,5	81,0	94,5
10	15,0	30,0	45,0	60,0	75,0	90,0	105,0
11	16,5	33,0	49,5	66,0	82,5	99,0	115,5
12	18,0	36,0	54,0	72,0	90,0	108,0	126,0
13	19,5	39,0	58,5	78,0	97,5	117,0	136,5
14	21,0	42,0	63,0	84,0	105,0	126,0	147,0
15	22,5	45,0	67,5	90,0	112,5	135,0	157,5
16	24,0	48,0	72,0	96,0	120,0	144,0	168,0
17	25,5	51,0	76,5	102,0	127,5	153,0	178,5
18	27,0	54,0	81,0	108,0	135,0	162,0	189,0
19	28,5	57,0	85,5	114,0	142,5	171,0	199,5
20	30,0	60,0	90,0	120,0	150,0	180,0	210,0

Linear expansion $\Delta \mathbf{L}$ in mm

TABLE: LINEAR EXPANSION

Linear expansion of GALLAPLAST-STABI combination pipes.

$\left(\alpha=0,03 \mathrm{~mm} / \mathrm{MC}^{\circ}\right)$

Linear expansion							
Length of	Difference in temperatures $\Delta t\left(\mathrm{C}^{\circ}\right)$						
L (m)	10	20	30	40	50	60	70
0,5	0,2	0,3	0,5	0,6	0,8	0,9	1,1
0,6	0,2	0,4	0,5	0,7	0,9	1,1	1,3
0,7	0,2	0,4	0,6	0,8	1,1	1,3	1,5
0,8	0,2	0,5	0,7	1,0	1,2	1,4	1,7
0,9	0,3	0,5	0,8	1,1	1,4	1,6	1,9
1	0,3	0,6	0,9	1,2	1,5	1,8	2,1
2	0,6	1,2	1,8	2,4	3,0	3,6	4,2
3	0,9	1,8	2,7	3,6	4,5	5,4	6,3
4	1,2	2,4	3,6	4,8	6,0	7,2	8,4
5	1,5	3,0	4,5	6,0	7,5	9,0	10,5
6	1,8	3,6	5,4	7,2	9,0	10,8	12,6
7	2,1	4,2	6,3	8,4	10,5	12,6	14,7
8	2,4	4,8	7,2	9,6	12,0	14,4	16,8
9	2,7	5,4	8,1	10,8	13,5	16,2	18,9
10	3,0	6,0	9,0	12,0	15,0	18,0	21,0
11	3,3	6,6	9,9	13,2	16,5	19,8	23,1
12	3,6	7,2	10,8	14,4	18,0	21,6	25,2
13	3,9	7,8	11,7	15,6	19,5	23,4	27,3
14	4,2	8,4	12,6	16,8	21,0	25,2	29,4
15	4,5	9,0	13,5	18,0	22,5	27,0	31,5
16	4,8	9,6	14,4	19,2	24,0	28,8	33,6
17	5,1	10,2	15,3	20,4	25,5	30,6	35,7
18	5,4	10,8	16,2	21,6	27,0	32,4	37,8
19	5,7	11,4	17,1	22,8	28,5	34,2	39,9
20	6,0	12,0	18,0	24,0	30,0	36,0	42,0

Linear expansion $\Delta \mathbf{L}$ in mm

REL\|ABLE PIPING SYSTEMS

TABLE: LINEAR EXPANSION

Linear expansion of GALLAPLAST-FAZER and

GALLAPLAST BetaFAZER combination pipes.

$\left(\alpha=0,04 \mathrm{~mm} / \mathrm{mC}^{\circ}\right)$

Linear expansion							
Length of	Difference in temperatures $\Delta t\left(\mathrm{C}^{\circ}\right)$						
$L(m)$	10	20	30	40	50	60	70
0,5	0,2	0,4	0,6	0,8	1,0	1,2	1,4
0,6	0,2	0,5	0,7	1,0	1,2	1,4	1,7
0,7	0,3	0,6	0,8	1,1	1,4	1,7	2,0
0,8	0,3	0,6	1,0	1,3	1,6	1,9	2,2
0,9	0,4	0,7	1,1	1,4	1,8	2,2	2,5
1	0,4	0,8	1,2	1,6	2,0	2,4	2,8
2	0,8	1,6	2,4	3,2	4,0	4,8	5,6
3	1,2	2,4	3,6	4,8	6,0	7,2	8,4
4	1,6	3,2	4,8	6,4	8,0	9,6	11,2
5	2,0	4,0	6,0	8,0	10,0	12,0	14,0
6	2,4	4,8	7,2	9,6	12,0	14,4	16,8
7	2,8	5,6	8,4	11,2	14,0	16,8	19,6
8	3,2	6,4	9,6	12,8	16,0	19,2	22,4
9	3,6	7,2	10,8	14,4	18,0	21,6	25,2
10	4,0	8,0	12,0	16,0	20,0	24,0	28,0
11	4,4	8,8	13,2	17,6	22,0	26,4	30,8
12	4,8	9,6	14,4	19,2	24,0	28,8	33,6
13	5,2	10,4	15,6	20,8	26,0	31,2	36,4
14	5,6	11,2	16,8	22,4	28,0	33,6	39,2
15	6,0	12,0	18,0	24,0	30,0	36,0	42,0
16	6,4	12,8	19,2	25,6	32,0	38,4	44,8
17	6,8	13,6	20,4	27,2	34,0	40,8	47,6
18	7,2	14,4	21,6	28,8	36,0	43,2	50,4
19	7,6	15,2	22,8	30,4	38,0	45,6	53,2
20	8,0	16,0	24,0	32,0	40,0	48,0	56,0

Linear expansion $\Delta \mathbf{L}$ in mm

DISTANCE BETWEEN SUPPORTS

GALLAPLAST-STABI combination pipe.

The table down below is intended for determination distance between supports of a horizontal pipeline made of GallaPlast-Stabi combination pipes, depending on temperature and diameter of pipeline. Parameter of $\Delta \mathrm{t}$ is determined by a difference between operating temperature and temperature during mounting.

Temperature Difference$\Delta t^{\circ} \mathrm{C}$	PIPELINE DIAMETER D (mm)						
	20	25	32	40	50	63	75
	DISTANCE BETWEEN SUPPORTS (cm)						
0	155	170	195	220	245	270	285
20	120	130	150	170	190	210	220
30	120	130	150	170	190	210	220
40	110	120	140	160	180	200	210
50	110	120	140	160	180	200	210
60	100	110	130	150	170	190	200
70	90	100	120	140	160	180	190

GALLAPLAST-FAZER and BetaFAZER combination pipe.
The table down below is intended for determination distance between supports of a horizontal pipeline made of multilayer pipes with fiberglass layer, depending on temperature and diameter of pipeline.

Temperature Difference$\Delta t^{\circ} \mathrm{C}$	PIPELINE DIAMETER D (mm)								
	20	25	32	40	50	63	75	90	110
	DISTANCE BETWEEN SUPPORTS (cm)								
0	120	140	160	180	205	230	245	260	290
20	90	105	120	135	155	175	185	195	215
30	90	105	120	135	155	175	185	195	210
40	85	95	110	125	145	165	175	185	200
50	85	95	110	125	145	165	175	185	190
60	80	90	105	120	135	155	165	175	180
70	70	80	95	110	130	145	155	165	170

GALLAPLAST STANDARD Pn16/SDR7,4 and Pn20/SDR6,0 GALLAPLAST Beta PP-R SDR9/S4 and Beta PP-R SDR7.4/S3.2

Temperature Difference$\Delta t^{\circ} \mathrm{C}$	PIPELINE DIAMETER D (mm)								
	20	25	32	40	50	63	75	90	110
	distance between supports (cm)								
0	85	105	125	140	165	190	205	220	250
20	60	75	90	100	120	140	150	160	180
30	60	75	90	100	120	140	150	160	180
40	60	70	80	90	110	130	140	150	170
50	60	70	80	90	110	130	140	150	170
60	55	65	75	85	100	115	125	140	160
70	50	60	75	80	95	105	115	125	140


```
Sa|l|\rho|ص=t
```

RELIABLE P\|PING SYSTEMS

CURVES OF THIE LON-TERM HYDROSTATIC STRENGTH OF PP-R

Gelloplose

RELIABLE PIPING SYSTEMS

Investing in your future

Gallaplast OÜ, Mustamäe tee 16, 10617, Tallinn, ESTONIA
Tel. +372 6799 180, Faks +372 6799181
www.gallaplast.com info@gallaplast.com

